-
公开(公告)号:CN115177864A
公开(公告)日:2022-10-14
申请号:CN202210857951.5
申请日:2022-07-20
Applicant: 燕山大学
Abstract: 本发明公开了一种结合肌肉激活度与深度学习的功能性电刺激闭环调控方法,将肌肉激活度分析和深度学习中的LSTM模型结合起来,设计开发了基于肌肉激活度与LSTM的功能性电刺激闭环调控方法,该方法可以根据对肌电信号实时分析得出肌肉状态并自动学习合适功能性电刺激参数,使得患者在健康侧握拳动作时可以根据肌肉激活度变化自动调整功能性电刺激参数,使功能性电刺激下的患侧与健康侧握力大小趋于一致;并且LSTM模型会随着输入数据集的增多不断学习优化输出的电刺激参数,解决了功能性电刺激临床治疗上不能根据用户肌肉状态实时调整自身参数、参数调整完全凭借经验、患者参与度不高和不能主动康复的问题。