基于非均衡数据集下的多源传感器轧机故障诊断的方法

    公开(公告)号:CN114462480B

    公开(公告)日:2024-08-27

    申请号:CN202111599158.1

    申请日:2021-12-24

    Applicant: 燕山大学

    Abstract: 本发明涉及一种基于非均衡数据集下的多源传感器轧机故障诊断的方法,对轧机的振动信号数据和声音信号数据进行融合从而实现轧机的故障诊断;该方法能够摆脱单一传感器的局限性,通过融合多传感器的数据,从而进行有用信息的互补,达到更高的诊断精度,解决非均衡数据集问题。用改进的一维卷积神经网络对轧机设备诊断系统采集的声音信号进行特征提取,利用改进的二维卷积神经网络对轧机设备诊断系统采集的振动信号的峰度图进行特征提取,最后在进行总的特征融合,该方法可以对充分信息提取,能够很好的应对轧机实际生产过程中所遇到的故障状态过少的问题,实现高诊断率以及准确率。

    基于非均衡数据集下的多源传感器轧机故障诊断的方法

    公开(公告)号:CN114462480A

    公开(公告)日:2022-05-10

    申请号:CN202111599158.1

    申请日:2021-12-24

    Applicant: 燕山大学

    Abstract: 本发明涉及一种基于非均衡数据集下的多源传感器轧机故障诊断的方法,对轧机的振动信号数据和声音信号数据进行融合从而实现轧机的故障诊断;该方法能够摆脱单一传感器的局限性,通过融合多传感器的数据,从而进行有用信息的互补,达到更高的诊断精度,解决非均衡数据集问题。用改进的一维卷积神经网络对轧机设备诊断系统采集的声音信号进行特征提取,利用改进的二维卷积神经网络对轧机设备诊断系统采集的振动信号的峰度图进行特征提取,最后在进行总的特征融合,该方法可以对充分信息提取,能够很好的应对轧机实际生产过程中所遇到的故障状态过少的问题,实现高诊断率以及准确率。

    针对样本不均衡的增强扩展深度置信网络的轧机故障诊断方法

    公开(公告)号:CN113111752B

    公开(公告)日:2022-07-08

    申请号:CN202110356774.8

    申请日:2021-04-01

    Applicant: 燕山大学

    Abstract: 本发明涉及一种针对样本不均衡的轧机故障诊断方法,该方法搭建于轧机的领域,利用振动信号数据和增强扩展深度置信网络进行轧机的故障诊断;轧机设备诊断系统在获取各种故障状态下的振动信号数据后,然后在PC端利用快速傅里叶变换(FFT)能够实现信号时域到频域的快速变换,从而实现振动信号特征的提取,然后在利用提取的所有类别的故障振动信号训练一个增强扩展深度置信网络,用于后续轧机的故障诊断。该方法在每一个RBM的可见层单元增加了上一个RBM的可见层单元,构成了RSRBM;由RSRBM组成的RSDBN可以对遗漏的有用信息提取,在一定的程度上可以减少样本不均衡带来的诊断率过低的问题,实现高诊断率并且可以加快诊断速度。

    针对样本不均衡的增强扩展深度置信网络的轧机故障诊断方法

    公开(公告)号:CN113111752A

    公开(公告)日:2021-07-13

    申请号:CN202110356774.8

    申请日:2021-04-01

    Applicant: 燕山大学

    Abstract: 本发明涉及一种针对样本不均衡的轧机故障诊断方法,该方法搭建于轧机的领域,利用振动信号数据和增强扩展深度置信网络进行轧机的故障诊断;轧机设备诊断系统在获取各种故障状态下的振动信号数据后,然后在PC端利用快速傅里叶变换(FFT)能够实现信号时域到频域的快速变换,从而实现振动信号特征的提取,然后在利用提取的所有类别的故障振动信号训练一个增强扩展深度置信网络,用于后续轧机的故障诊断。该方法在每一个RBM的可见层单元增加了上一个RBM的可见层单元,构成了RSRBM;由RSRBM组成的RSDBN可以对遗漏的有用信息提取,在一定的程度上可以减少样本不均衡带来的诊断率过低的问题,实现高诊断率并且可以加快诊断速度。

Patent Agency Ranking