-
公开(公告)号:CN119676094A
公开(公告)日:2025-03-21
申请号:CN202510185592.7
申请日:2025-02-20
Applicant: 烟台大学
IPC: H04L41/12 , H04L41/142 , H04L41/16 , H04L41/0631 , H04L67/12 , G06N3/04 , G06N3/08 , G06N5/022
Abstract: 本发明涉及工业物联网检测技术领域,尤其是涉及一种基于联邦图神经网络工业物联网设备检测方法及系统。所述方法,包括获取每个设备的实时运行状态数据和传感器的测量值,利用输入数据作为设备节点特征构建拓扑图,并基于拓扑图引入知识图谱,将客户端设备状态与知识图谱信息进行融合,引入注意力机制对客户端本地模型的权重进行自适应调整;基于融合后的节点特征进行特征增强,建立基于强化学习的联邦图神经网络客户端动态调度策略,利用全局模型进行图结构数据的节点分类任务,本发明基于融合后的节点特征进行特征增强、引入投影头和计算对比损失,提升了模型在缺乏标注数据下的性能,使模型学习到更稳健特征,增强了对设备故障的判断准确性。
-
公开(公告)号:CN118713938A
公开(公告)日:2024-09-27
申请号:CN202411203462.3
申请日:2024-08-30
Applicant: 烟台大学
IPC: H04L9/40 , G06F18/2433 , G06F18/25
Abstract: 本发明涉及异常节点检测技术领域,尤其是涉及一种基于异质图的工业互联网异常节点检测方法及系统。所述方法包括:对新的图结构进行不同类型节点的特征映射;基于自注意力机制对新的图结构进行计算得到节点嵌入向量;基于语义级的注意力机制学习元路径的重要性,通过融合节点嵌入向量得到最终的融合嵌入向量;对节点的融合嵌入向量进行分类,以检测工业互联网中的异常节点。在本发明中,将工业互联网看作异质图神经网络,引入机器学习和图神经网络框架,结合利用图结构学习算法、图注意力网络、元路径等一系列技术,实现对工业互联网中的异常节点进行准确、高效识别和监控。
-
公开(公告)号:CN118282876A
公开(公告)日:2024-07-02
申请号:CN202410710859.5
申请日:2024-06-04
Applicant: 烟台大学 , 烟台中科网络技术研究所
IPC: H04L41/142 , H04L41/16 , H04L41/0631 , H04L67/104
Abstract: 本发明涉及网络异常检测技术领域,尤其是涉及一种不完备异构以太坊网络的异常节点检测方法及系统。方法,包括获取以太坊交易数据,并构建以太坊交易网络,基于残差注意力机制补全以太坊交易网络中的目标节点的缺失属性特征;基于以太坊交易网络中的交易关系,生成关系交易子图;基于关系交易子图的相关性,生成关系交易子图的特征相似度图、特征传播图、语义图及观察图;通过引入机器学习算法,将以太坊交易网络与图神经网络结合利用图结构学习算法实现对以太坊交易网络中的异常节点进行准确、高效识别和监控。
-
公开(公告)号:CN116545764A
公开(公告)日:2023-08-04
申请号:CN202310759096.9
申请日:2023-06-26
Applicant: 烟台大学
IPC: H04L9/40
Abstract: 本发明涉及网络安全技术领域,具体为一种工业互联网的异常数据检测方法、系统和设备,该检测方法中,对比初始节点的数据分布与经过提取处理的第一正常数据分布中正常特征表达性能得到第一异常评分;且对比初始节点的数据分布与经过增强处理的第二正常数据分布中正常特征表达性能得到第二异常评分,基于第一异常评分和第二异常评分,得到节点的风险等级,并立刻做出相应的节点交流权限限制,双重检测,准确性高,检测结果稳定,有利于维护工业互联网安全。
-
公开(公告)号:CN118313413A
公开(公告)日:2024-07-09
申请号:CN202410741075.9
申请日:2024-06-11
Applicant: 烟台大学 , 烟台中科网络技术研究所
Abstract: 本发明涉及神经网络模型技术领域,尤其是涉及一种基于异构图神经网络的物联网链路预测方法及系统。所述方法,包括构建异构图,并对异构图进行特征表示;基于异构图构建客户端本地模型,包括利用动态注意力机制的图注意力网络构建客户端本地模型;输入异构图至客户端本地模型,并引入贝叶斯推理对异构图的特征进行线性变换;通过损失函数对输入异构图的客户端本地模型进行损失处理;计算客户端本地模型梯度,并对客户端本地模型梯度执行全局模型聚合,得到全局模型参数;将全局模型参数下发至客户端本地模型。通过本发明的技术方案提高链路预测的准确性和鲁棒性。
-
公开(公告)号:CN117910519A
公开(公告)日:2024-04-19
申请号:CN202410315719.8
申请日:2024-03-20
Applicant: 烟台大学
IPC: G06N3/0475 , G06N3/094 , G06N3/126 , G06F16/9535
Abstract: 本发明属于图结构优化推荐领域,提供了一种进化图生成对抗网络的图应用方法、系统及推荐方法,包括确定图的节点和边,构建真实图结构;生成器利用不同的变异函数生成不同的虚假图结构;鉴别器利用适应性函数对每个生成的虚假图结构进行质量评估,确定每个生成的虚假图结构的适应性得分并反馈给生成器;根据每个虚假图结构的适应性得分进行排序,生成器会通过适应性得分最高的虚假图结构来生成更加逼真的数据分布;每一轮进化迭代后,鉴别器更新自适应损失以便于能够更好地区分真实数据分布和生成数据分布,进而得到最优的图结构。本发明利用进化算法来使得原先的生成器充当进化体不断的在环境(鉴别器)中进化,减少模式崩溃与梯度问题。
-
公开(公告)号:CN118432948B
公开(公告)日:2024-09-27
申请号:CN202410888223.X
申请日:2024-07-04
Applicant: 烟台大学
IPC: H04L9/40 , G06F18/2415 , G06F18/214 , G06F18/15 , G06F18/2131 , G06F18/25 , G06N3/0499
Abstract: 本发明涉及工业互联网数据安全技术领域,尤其是涉及一种基于弱信息的工业互联网异常节点的检测方法及系统,包括S1.利用工业互联网中的传感器和设备获取相关节点运行的数据;S2.利用统计方法和机器学习算法对数据进行清洗,消除噪声和异常值,并对数据进行归一化处理;S3.根据数据的来源、类型和应用场景对数据进行初步分类;S4.利用频域特征提取方法对数据进行傅立叶变换;S5.构建基于弱信息的异常节点检测模型;S6.利用测试集对模型进行测试。实现了在应对数据信息缺失、数据结构缺失以及数据类别不完整的情况下可以提高检测异常节点的准确度,降低了标签标注的成本和时间,提高了模型的整体效率。
-
公开(公告)号:CN118282876B
公开(公告)日:2024-08-30
申请号:CN202410710859.5
申请日:2024-06-04
Applicant: 烟台大学 , 烟台中科网络技术研究所
IPC: H04L41/142 , H04L41/16 , H04L41/0631 , H04L67/104
Abstract: 本发明涉及网络异常检测技术领域,尤其是涉及一种不完备异构以太坊网络的异常节点检测方法及系统。方法,包括获取以太坊交易数据,并构建以太坊交易网络,基于残差注意力机制补全以太坊交易网络中的目标节点的缺失属性特征;基于以太坊交易网络中的交易关系,生成关系交易子图;基于关系交易子图的相关性,生成关系交易子图的特征相似度图、特征传播图、语义图及观察图;通过引入机器学习算法,将以太坊交易网络与图神经网络结合利用图结构学习算法实现对以太坊交易网络中的异常节点进行准确、高效识别和监控。
-
公开(公告)号:CN118313413B
公开(公告)日:2024-08-13
申请号:CN202410741075.9
申请日:2024-06-11
Applicant: 烟台大学 , 烟台中科网络技术研究所
Abstract: 本发明涉及神经网络模型技术领域,尤其是涉及一种基于异构图神经网络的物联网链路预测方法及系统。所述方法,包括构建异构图,并对异构图进行特征表示;基于异构图构建客户端本地模型,包括利用动态注意力机制的图注意力网络构建客户端本地模型;输入异构图至客户端本地模型,并引入贝叶斯推理对异构图的特征进行线性变换;通过损失函数对输入异构图的客户端本地模型进行损失处理;计算客户端本地模型梯度,并对客户端本地模型梯度执行全局模型聚合,得到全局模型参数;将全局模型参数下发至客户端本地模型。通过本发明的技术方案提高链路预测的准确性和鲁棒性。
-
公开(公告)号:CN118432948A
公开(公告)日:2024-08-02
申请号:CN202410888223.X
申请日:2024-07-04
Applicant: 烟台大学
IPC: H04L9/40 , G06F18/2415 , G06F18/214 , G06F18/15 , G06F18/2131 , G06F18/25 , G06N3/0499
Abstract: 本发明涉及工业互联网数据安全技术领域,尤其是涉及一种基于弱信息的工业互联网异常节点的检测方法及系统,包括S1.利用工业互联网中的传感器和设备获取相关节点运行的数据;S2.利用统计方法和机器学习算法对数据进行清洗,消除噪声和异常值,并对数据进行归一化处理;S3.根据数据的来源、类型和应用场景对数据进行初步分类;S4.利用频域特征提取方法对数据进行傅立叶变换;S5.构建基于弱信息的异常节点检测模型;S6.利用测试集对模型进行测试。实现了在应对数据信息缺失、数据结构缺失以及数据类别不完整的情况下可以提高检测异常节点的准确度,降低了标签标注的成本和时间,提高了模型的整体效率。
-
-
-
-
-
-
-
-
-