一种多变量时序异常检测方法、系统、介质、设备及终端

    公开(公告)号:CN115222141A

    公开(公告)日:2022-10-21

    申请号:CN202210905232.6

    申请日:2022-07-29

    Abstract: 本发明属于风电机组异常检测技术领域,公开了一种多变量时序异常检测方法、系统、介质、设备及终端,构建由空间特征重构模块和时序预测模块组成的异常检测的融合框架;在空间特征重构模块中,采用DSAE深度栈式自动编码器提取多变量间的空间相关特征,输出低维特征表示,计算重建误差;在时序预测模块中,采用基于自注意力的Transformer预测子网络提取复杂的全局时序依赖关系;采用联合训练方式同时优化融合框架中的两个子网络,最小化重建误差和预测误差,实现针对风电机组SCADA数据的多变量时序异常检测。本发明结合重构方法和预测方法优点,提取多变量时序数据中空间特征和时序依赖,实现可靠的风电SCADA异常检测。

Patent Agency Ranking