基于深度神经网络的道路车道线检测方法及系统

    公开(公告)号:CN113392812B

    公开(公告)日:2022-06-07

    申请号:CN202110773241.X

    申请日:2021-07-08

    Applicant: 湖南大学

    Inventor: 肖德贵 卓林

    Abstract: 本发明提供了一种基于深度神经网络的车道线检测方法及系统,所述方法通过编码网络模块对连续图像进行特征提取得到包含车道线语义特征的特征图序列,然后将特征图序列输入到对应的循环卷积网络模块中,通过循环卷积网络模块对特征图序列进行多层循环卷积和时序特征融合,输出特征融合后的语义特征图,最后通过所述解码网络模块对所述语义特征图进行解码,输出车道线位置的预测图。本发明充分地考虑了驾驶场景的连续性,即时间序列上的关联,可以学习到时间先验的关联信息,从而提高网络的稳定性和预测的准确性,还可以将连续图像中前级图像的特征信息用于后级图像,可以减少网络模型的参数和计算复杂度,节约计算资源。

    基于深度神经网络的道路车道线检测方法及系统

    公开(公告)号:CN113392812A

    公开(公告)日:2021-09-14

    申请号:CN202110773241.X

    申请日:2021-07-08

    Applicant: 湖南大学

    Inventor: 肖德贵 卓林

    Abstract: 本发明提供了一种基于深度神经网络的车道线检测方法及系统,所述方法通过编码网络模块对连续图像进行特征提取得到包含车道线语义特征的特征图序列,然后将特征图序列输入到对应的循环卷积网络模块中,通过循环卷积网络模块对特征图序列进行多层循环卷积和时序特征融合,输出特征融合后的语义特征图,最后通过所述解码网络模块对所述语义特征图进行解码,输出车道线位置的预测图。本发明充分地考虑了驾驶场景的连续性,即时间序列上的关联,可以学习到时间先验的关联信息,从而提高网络的稳定性和预测的准确性,还可以将连续图像中前级图像的特征信息用于后级图像,可以减少网络模型的参数和计算复杂度,节约计算资源。

Patent Agency Ranking