一种轻量级基于深度学习的心律失常分类方法

    公开(公告)号:CN114970637A

    公开(公告)日:2022-08-30

    申请号:CN202210650732.X

    申请日:2022-06-10

    Abstract: 本发明涉及一种轻量级基于深度学习的心律失常分类方法,包括:1)采集原始一维单导联心电信号进行心拍分割;2)对分割的心拍进行Z‑Score标准化;3)按患者间范式构建训练集和待测数据集,并平衡训练集样本;4)构建包含基于卷积神经网络的心电信号特征提取器、基于双向长短时网络的特征学习器和特征分类器的轻量级融合预分类模型;5)使用批量加权损失函数,并利用训练集和随机梯度下降法对模型进行训练。6)载入训练好的模型实现待测数据的心律失常分类。本发明提出一种批量加权损失函数和一种轻量级预分类模型结构,提高了异常心电信号分类识别处理速度,准确率高,泛化能力强,适合应用于边缘计算设备。

Patent Agency Ranking