-
公开(公告)号:CN107358626B
公开(公告)日:2020-05-15
申请号:CN201710581875.9
申请日:2017-07-17
Applicant: 清华大学深圳研究生院
Abstract: 本发明公开了一种利用条件生成对抗网络计算视差的方法,先训练一个神经网络计算左右两张图片的视差,训练完成后,该神经网络作为条件生成对抗网络的生成器;然后训练另一个神经网络判断视差图的正确性,训练完成后,该神经网络作为条件生成对抗网络的判别器;在训练本发明的条件生成对抗网络时,生成器生成左右眼图像的视差图,判别器判别该视差图的正确率;根据判别器的判别结果,调节生成器网络的权值;训练完成后,生成器的网络权值调整到最佳,将生成器分离出来,此时的生成器就是能生成左右眼图像视差图的最佳神经网络。通过上述操作,得到的最佳神经网络结构较简单,再使用GPU加速计算,可以提高现有的匹配速度。
-
公开(公告)号:CN107358626A
公开(公告)日:2017-11-17
申请号:CN201710581875.9
申请日:2017-07-17
Applicant: 清华大学深圳研究生院
Abstract: 本发明公开了一种利用条件生成对抗网络计算视差的方法,先训练一个神经网络计算左右两张图片的视差,训练完成后,该神经网络作为条件生成对抗网络的生成器;然后训练另一个神经网络判断视差图的正确性,训练完成后,该神经网络作为条件生成对抗网络的判别器;在训练本发明的条件生成对抗网络时,生成器生成左右眼图像的视差图,判别器判别该视差图的正确率;根据判别器的判别结果,调节生成器网络的权值;训练完成后,生成器的网络权值调整到最佳,将生成器分离出来,此时的生成器就是能生成左右眼图像视差图的最佳神经网络。通过上述操作,得到的最佳神经网络结构较简单,再使用GPU加速计算,可以提高现有的匹配速度。
-