-
公开(公告)号:CN111862009B
公开(公告)日:2024-01-16
申请号:CN202010634005.5
申请日:2020-07-02
Applicant: 清华大学深圳国际研究生院
IPC: G06V10/764 , G06V10/82 , G06V10/774 , G06N3/0464 , G06N3/082
Abstract: 本发明提供一种眼底OCT图像的分类方法及计算机可读存储介质,方法包括:S1:获取待分类的眼底OCT图像;S2:采用训练好的卷积神经网络模型对所述待分类的眼底OCT图像进行分类,所述卷积神经网络模型是串行结构;S3:得到所述待分类的眼底OCT图像的分类结果。通过采用串行结构的卷积神经网络模型对眼底OCT图像进行分类,基于卷积神经网络框架,通过迭代训练有效地提升了分类网络的精度,能够在数据标注不足/小规模数据集的情况下实现端到端的视网膜病变OCT图像分类。
-
公开(公告)号:CN111862009A
公开(公告)日:2020-10-30
申请号:CN202010634005.5
申请日:2020-07-02
Applicant: 清华大学深圳国际研究生院
Abstract: 本发明提供一种眼底OCT图像的分类方法及计算机可读存储介质,方法包括:S1:获取待分类的眼底OCT图像;S2:采用训练好的卷积神经网络模型对所述待分类的眼底OCT图像进行分类,所述卷积神经网络模型是串行结构;S3:得到所述待分类的眼底OCT图像的分类结果。通过采用串行结构的卷积神经网络模型对眼底OCT图像进行分类,基于卷积神经网络框架,通过迭代训练有效地提升了分类网络的精度,能够在数据标注不足/小规模数据集的情况下实现端到端的视网膜病变OCT图像分类。
-