一种基于卷积自编码器的船舶AIS轨迹聚类方法和装置

    公开(公告)号:CN111694913B

    公开(公告)日:2023-07-11

    申请号:CN202010507856.3

    申请日:2020-06-05

    Applicant: 海南大学

    Abstract: 本发明涉及一种基于卷积自编码器的船舶AIS轨迹聚类方法和装置。本发明的基于卷积自编码器的船舶AIS轨迹聚类方法包括:获取船舶的连续轨迹,将连续轨迹划分为若干子轨迹;对若干子轨迹进行特征工程提取,得到子轨迹特征矩阵;将子轨迹特征矩阵输入多特征融合自编码器,获得位置特征向量、速度特征向量和航向特征向量;对位置特征向量、速度特征向量和航向特征向量进行拼接操作,获得船舶轨迹的潜在特征向量;对提取后的船舶轨迹特征向量进行轨迹聚类操作,得到船舶轨迹聚类结果。本发明的方法不需要根据相关数据量和轨迹类型,计算复杂度,噪声和其他影响因素来选择时空轨迹度量方法,不需要相似度距离公式,从而节省了计算时间和资源。

    一种基于卷积自编码器的船舶AIS轨迹聚类方法和装置

    公开(公告)号:CN111694913A

    公开(公告)日:2020-09-22

    申请号:CN202010507856.3

    申请日:2020-06-05

    Applicant: 海南大学

    Abstract: 本发明涉及一种基于卷积自编码器的船舶AIS轨迹聚类方法和装置。本发明的基于卷积自编码器的船舶AIS轨迹聚类方法包括:获取船舶的连续轨迹,将连续轨迹划分为若干子轨迹;对若干子轨迹进行特征工程提取,得到子轨迹特征矩阵;将子轨迹特征矩阵输入多特征融合自编码器,获得位置特征向量、速度特征向量和航向特征向量;对位置特征向量、速度特征向量和航向特征向量进行拼接操作,获得船舶轨迹的潜在特征向量;对提取后的船舶轨迹特征向量进行轨迹聚类操作,得到船舶轨迹聚类结果。本发明的方法不需要根据相关数据量和轨迹类型,计算复杂度,噪声和其他影响因素来选择时空轨迹度量方法,不需要相似度距离公式,从而节省了计算时间和资源。

Patent Agency Ranking