-
公开(公告)号:CN115759289A
公开(公告)日:2023-03-07
申请号:CN202211431701.1
申请日:2022-11-16
Applicant: 海南大学
Abstract: 本申请提供了一种基于用户分组协同的联邦学习方法、系统及装置,其中,一种基于用户分组协同的联邦学习方法,提出了一种基于用户的分组协作联邦学习隐私保护框架,它使用两种尺度的传输方法,在传统的联邦学习架构上增加本地计算,减少与服务器的连接数,可以有效解决用户串通问题。通过改变组数来减少链式结构导致的系统上行消耗时间延长,优于经典的联邦学习平均聚合算法。即使用户相互勾结,仍然可以保护隐私,并且不影响模型训练的准确性。