-
公开(公告)号:CN109063908B
公开(公告)日:2020-10-27
申请号:CN201810852241.7
申请日:2018-07-30
Applicant: 浙江鸿程计算机系统有限公司
Abstract: 本发明涉及一种基于深度多任务学习的城市AQI预测与空间细粒度AQI等级估计方法,本发明对于AQI预测,利用深度神经网络得到与之相关的多种城市大数据的表示,基于这些表示对有监测站区域的AQI进行预测。对于空间细粒度AQI等级估计,利用深度神经网络得到与之相关的多种城市大数据的表示,基于这些表示对无监测站区域的AQI等级进行估计。通过共享数据表示,对模型参数进行协同训练。本发明结合深度学习和多任务学习对有空气质量监测站的区域进行AQI预测,对无空气质量监测站的区域进行AQI等级估计,在普适计算、环保等领域具有广阔的应用前景。
-
公开(公告)号:CN109063908A
公开(公告)日:2018-12-21
申请号:CN201810852241.7
申请日:2018-07-30
Applicant: 浙江鸿程计算机系统有限公司
Abstract: 本发明涉及一种基于深度多任务学习的城市AQI预测与空间细粒度AQI等级估计方法,本发明对于AQI预测,利用深度神经网络得到与之相关的多种城市大数据的表示,基于这些表示对有监测站区域的AQI进行预测。对于空间细粒度AQI等级估计,利用深度神经网络得到与之相关的多种城市大数据的表示,基于这些表示对无监测站区域的AQI等级进行估计。通过共享数据表示,对模型参数进行协同训练。本发明结合深度学习和多任务学习对有空气质量监测站的区域进行AQI预测,对无空气质量监测站的区域进行AQI等级估计,在普适计算、环保等领域具有广阔的应用前景。
-