-
公开(公告)号:CN106600533B
公开(公告)日:2019-09-17
申请号:CN201611125571.3
申请日:2016-12-08
Applicant: 浙江工业大学 , 绍兴文理学院 , 绍兴文理学院元培学院
IPC: G06T3/40
Abstract: 本发明涉及一种单图像超分辨率重建方法,包括对原始图像进行预处理得到所对应的低分辨率图像;将所述低分辨率图像分为多个组;对各个组进行自适应字典学习,计算各个组的自适应学习字典;在各个组的自适应学习字典的基础上计算各个组的稀疏编码;对各个组的图像块进行恢复重建,对所有的组计算平均值并得到一个完整的高分辨率图像。采用该种方法,利用组作为稀疏表示单元稀疏表示图像,不仅具有良好的稀疏表示性能,而且在字典学习过程中需要解决一个小规模的优化问题,降低了计算复杂度;此外,图像块划分为组采用高斯距离度量考虑了图像块之间的非线性信息关系,更好地利用了图像的非局部自相似信息,重构的HR图像更加地清晰。
-
公开(公告)号:CN106600533A
公开(公告)日:2017-04-26
申请号:CN201611125571.3
申请日:2016-12-08
Applicant: 浙江工业大学 , 绍兴文理学院 , 绍兴文理学院元培学院
IPC: G06T3/40
Abstract: 本发明涉及一种单图像超分辨率重建方法,包括对原始图像进行预处理得到所对应的低分辨率图像;将所述低分辨率图像分为多个组;对各个组进行自适应字典学习,计算各个组的自适应学习字典;在各个组的自适应学习字典的基础上计算各个组的稀疏编码;对各个组的图像块进行恢复重建,对所有的组计算平均值并得到一个完整的高分辨率图像。采用该种方法,利用组作为稀疏表示单元稀疏表示图像,不仅具有良好的稀疏表示性能,而且在字典学习过程中需要解决一个小规模的优化问题,降低了计算复杂度;此外,图像块划分为组采用高斯距离度量考虑了图像块之间的非线性信息关系,更好地利用了图像的非局部自相似信息,重构的HR图像更加地清晰。
-
公开(公告)号:CN110689049A
公开(公告)日:2020-01-14
申请号:CN201910830476.0
申请日:2019-09-04
Applicant: 绍兴文理学院
Abstract: 本发明涉及一种基于黎曼核字典学习算法的视觉分类方法,包括首先对视觉数据使用对称正定矩阵描述,并将其表示为黎曼流形上的点;其次借助于黎曼核,在黎曼流形中构建学习字典的图拉普拉斯矩阵,保留了该流形空间中字典原子的局部信息,而不是像常规算法一样在欧氏空间中保留字典原子的局部信息;接着,在黎曼流形空间中构建能够保留学习字典判别信息的字典原子的标签嵌入项,通过局部约束标签嵌入算法建立黎曼流形空间中的稀疏编码和字典学习数学模型;再次,结合凸优化方法,给出了局部约束标签嵌入黎曼核字典学习算法;最后,构造一个迭代更新算法优化目标,并利用线性分类器完成测试样本的分类。该视觉分类方法在分类精度上获得了较大的提升。
-
-