一种利用水稻根制得的Fe3O4/C复合材料及其应用

    公开(公告)号:CN103840152B

    公开(公告)日:2016-02-24

    申请号:CN201410038814.4

    申请日:2014-01-26

    Abstract: 本发明公开了一种利用水稻根制得的Fe3O4/C复合材料及其应用,所述Fe3O4/C复合材料的制备方法包括如下步骤:(1)将水稻根洗净,进行冷冻干燥;(2)使冷冻干燥后的水稻根在氮气或氩气保护下以5~20℃/min的升温速率升至200~500℃进行预碳化,预碳化后冷却、研磨;(3)预碳化后的水稻根与质量分数为10~30%的聚苯乙烯的DMF溶液混合,然后在氮气或氩气保护下以5~20℃/min的升温速率升至400~1000℃进行碳化,碳化后冷却、研磨得到Fe3O4/C复合材料。本发明公开了所述的Fe3O4/C复合材料作为锂离子电池负极材料的应用以及由此制得的锂离子电池,锂离子电池具有良好的循环性能、容量保持率和库伦效率。

    一种利用藻类制得的Sn/C复合材料及其应用

    公开(公告)号:CN103840138B

    公开(公告)日:2016-03-02

    申请号:CN201410037831.6

    申请日:2014-01-26

    Abstract: 本发明公开了一种利用藻类制得的Sn/C复合材料及其应用,所述Sn/C复合材料的制备方法包括如下步骤:(1)取SnCl4·5H2O溶解于酒精中,直至澄清,形成0.2~0.8M的前驱体溶液;(2)藻类用甲醛和去离子水的混合溶液清洗、除杂;(3)室温条件下,将洗净的藻类在前驱体溶液中浸泡1~4小时,过滤,烘干;(4)将步骤(3)获得的烘干的材料与质量分数为10~30%的聚苯乙烯的DMF溶液混合,然后在氮气或氩气保护下以5~20℃/min的升温速率升至400~1000℃碳化2~7小时,冷却、研磨得到Sn/C复合材料。本发明中Sn/C复合材料来源于藻类吸附锡金属离子,原料来源广泛、易得到,易于工业化实施;制备工艺简单,对环境友好;制得的Sn/C复合材料在作为锂离子电池负极材料应用时具有良好的循环性能和库伦效率。

    以二氧化钛为骨架结构包覆磷的复合材料及其应用

    公开(公告)号:CN103825002A

    公开(公告)日:2014-05-28

    申请号:CN201410043623.7

    申请日:2014-01-29

    Abstract: 本发明公开了一种以二氧化钛为骨架结构包覆磷的复合材料及其应用,所述复合材料的制备方法包括如下步骤:(1)取红磷粉末和分散剂混合,溶入乙醇中超声2~4h,而后自然沉降48~96h;(2)取沉降后得到的上层液,加入钛源,搅拌后缓慢加入去离子水,离心收集下层沉淀物,烘干后在300~400℃煅烧2~4小时,得到以二氧化钛为骨架结构包覆磷的复合材料。本发明还提供了所述以二氧化钛为骨架结构包覆磷的复合材料作为锂离子电池负极材料的应用以及由此制得的锂离子电池。本发明制得的复合材料作为锂离子电池负极材料应用时,能够大幅提高其大电流充放电条件下的性能,并具有很高的安全性。

    以二氧化钛为骨架结构包覆磷的复合材料及其应用

    公开(公告)号:CN103825002B

    公开(公告)日:2017-01-04

    申请号:CN201410043623.7

    申请日:2014-01-29

    Abstract: 本发明公开了一种以二氧化钛为骨架结构包覆磷的复合材料及其应用,所述复合材料的制备方法包括如下步骤:(1)取红磷粉末和分散剂混合,溶入乙醇中超声2~4h,而后自然沉降48~96h;(2)取沉降后得到的上层液,加入钛源,搅拌后缓慢加入去离子水,离心收集下层沉淀物,烘干后在300~400℃煅烧2~4小时,得到以二氧化钛为骨架结构包覆磷的复合材料。本发明还提供了所述以二氧化钛为骨架结构包覆磷的复合材料作为锂离子电池负极材料的应用以及由此制得的锂离子电池。本发明制得的复合材料作为锂离子电池负极材料应用时,能够大幅提高其大电流充放电条件下的性能,并具有很高的安全性。

    一种利用水稻根制得的Fe3O4/C复合材料及其应用

    公开(公告)号:CN103840152A

    公开(公告)日:2014-06-04

    申请号:CN201410038814.4

    申请日:2014-01-26

    CPC classification number: H01M4/362 H01M4/52 H01M10/0525 H01M2004/027

    Abstract: 本发明公开了一种利用水稻根制得的Fe3O4/C复合材料及其应用,所述Fe3O4/C复合材料的制备方法包括如下步骤:(1)将水稻根洗净,进行冷冻干燥;(2)使冷冻干燥后的水稻根在氮气或氩气保护下以5~20℃/min的升温速率升至200~500℃进行预碳化,预碳化后冷却、研磨;(3)预碳化后的水稻根与质量分数为10~30%的聚苯乙烯的DMF溶液混合,然后在氮气或氩气保护下以5~20℃/min的升温速率升至400~1000℃进行碳化,碳化后冷却、研磨得到Fe3O4/C复合材料。本发明公开了所述的Fe3O4/C复合材料作为锂离子电池负极材料的应用以及由此制得的锂离子电池,锂离子电池具有良好的循环性能、容量保持率和库伦效率。

    一种利用水葫芦制得的Fe3O4/C复合材料及其应用

    公开(公告)号:CN103840137A

    公开(公告)日:2014-06-04

    申请号:CN201410037463.5

    申请日:2014-01-26

    CPC classification number: H01M4/362 H01M4/52 H01M10/0525 H01M2004/027

    Abstract: 本发明公开了一种利用水葫芦制得的Fe3O4/C复合材料及其应用,所述Fe3O4/C复合材料的制备方法包括如下步骤:(1)将水葫芦在含有铁元素的水体中进行培养,然后把培养后的水葫芦进行冷冻干燥;(2)将冷冻干燥后的水葫芦与质量分数为10~30%的聚苯乙烯的DMF溶液混合,然后在氮气或氩气保护下以5~20℃/min的升温速率升至400~1000℃进行碳化2~7小时,碳化后冷却、研磨得到Fe3O4/C复合材料。本发明提供了所述的Fe3O4/C复合材料作为锂离子电池负极材料的应用以及由此制得的锂离子电池。本发明的制备方法在改善环境重金属污染的同时具有原材料来源广泛、易于工业化实施、制备工艺简单、对环境友好的特点,制得的Fe3O4/C复合材料作为锂离子电池负极材料应用具有良好的循环性能和库伦效率。

    一种利用水葫芦制得的Fe3O4/C复合材料及其应用

    公开(公告)号:CN103840137B

    公开(公告)日:2016-02-24

    申请号:CN201410037463.5

    申请日:2014-01-26

    Abstract: 本发明公开了一种利用水葫芦制得的Fe3O4/C复合材料及其应用,所述Fe3O4/C复合材料的制备方法包括如下步骤:(1)将水葫芦在含有铁元素的水体中进行培养,然后把培养后的水葫芦进行冷冻干燥;(2)将冷冻干燥后的水葫芦与质量分数为10~30%的聚苯乙烯的DMF溶液混合,然后在氮气或氩气保护下以5~20℃/min的升温速率升至400~1000℃进行碳化2~7小时,碳化后冷却、研磨得到Fe3O4/C复合材料。本发明提供了所述的Fe3O4/C复合材料作为锂离子电池负极材料的应用以及由此制得的锂离子电池。本发明的制备方法在改善环境重金属污染的同时具有原材料来源广泛、易于工业化实施、制备工艺简单、对环境友好的特点,制得的Fe3O4/C复合材料作为锂离子电池负极材料应用具有良好的循环性能和库伦效率。

    一种利用藻类制得的Sn/C复合材料及其应用

    公开(公告)号:CN103840138A

    公开(公告)日:2014-06-04

    申请号:CN201410037831.6

    申请日:2014-01-26

    CPC classification number: H01M4/362 H01M4/387 H01M10/0525 H01M2004/027

    Abstract: 本发明公开了一种利用藻类制得的Sn/C复合材料及其应用,所述Sn/C复合材料的制备方法包括如下步骤:(1)取SnCl4·5H2O溶解于酒精中,直至澄清,形成0.2~0.8M的前驱体溶液;(2)藻类用甲醛和去离子水的混合溶液清洗、除杂;(3)室温条件下,将洗净的藻类在前驱体溶液中浸泡1~4小时,过滤,烘干;(4)将步骤(3)获得的烘干的材料与质量分数为10~30%的聚苯乙烯的DMF溶液混合,然后在氮气或氩气保护下以5~20℃/min的升温速率升至400~1000℃碳化2~7小时,冷却、研磨得到Sn/C复合材料。本发明中Sn/C复合材料来源于藻类吸附锡金属离子,原料来源广泛、易得到,易于工业化实施;制备工艺简单,对环境友好;制得的Sn/C复合材料在作为锂离子电池负极材料应用时具有良好的循环性能和库伦效率。

Patent Agency Ranking