基于双路神经网络的纺织面料中纤维种类及混纺比例识别方法

    公开(公告)号:CN108875777A

    公开(公告)日:2018-11-23

    申请号:CN201810413037.5

    申请日:2018-05-03

    Abstract: 基于双路神经网络的纺织面料中纤维种类及混纺比例识别方法,首先利用手机装上专业光学放大摄像头采集纺织面料样本数据;其次,构建双路深度神经网络,以采集到纺织面料样本中部分图像块为输入,输出为纺织面料中纤维种类及混纺比例,对采集到的样本数据集预处理后,对构建的双路深度网络进行训练;实际使用中,利用手机配备的专业光学放大摄像头拍摄任意一种纺织面料,获得的图片远程传入训练好的深度网络,输出对应纺织面料中纤维种类以及对应混纺比例。通过上述3个步骤,可以识别出任意一种纺织面料中纤维种类以及对应混纺比例。

    一种适用于灰度颜色空间图像相关色域映射方法

    公开(公告)号:CN110310342B

    公开(公告)日:2023-06-02

    申请号:CN201910598505.5

    申请日:2019-07-04

    Abstract: 本发明提供了一种适用于灰度颜色空间图像相关色域映射方法,包括以下步骤:S1:小色域边界上下阈值获取;S2:将灰度图像的二维平面结合灰度值构建为三维颜色曲面;S3:灰度颜色曲面待映射范围边界设置;S4:基于颜色准确度与纹理保持权衡构建待求解优化模型;S5:利用迭代求解的方法获得模型的次优解。本发明所述的一种适用于灰度颜色空间图像相关色域映射方法,通过设置参数来动态调整颜色映射的精准度与灰度图像层次纹理信息的保持程度,实现灰度图像保持颜色纹理的同时实现颜色的精准映射。

    一种适用于灰度颜色空间图像相关色域映射方法

    公开(公告)号:CN110310342A

    公开(公告)日:2019-10-08

    申请号:CN201910598505.5

    申请日:2019-07-04

    Abstract: 本发明提供了一种适用于灰度颜色空间图像相关色域映射方法,包括以下步骤:S1:小色域边界上下阈值获取;S2:将灰度图像的二维平面结合灰度值构建为三维颜色曲面;S3:灰度颜色曲面待映射范围边界设置;S4:基于颜色准确度与纹理保持权衡构建待求解优化模型;S5:利用迭代求解的方法获得模型的次优解。本发明所述的一种适用于灰度颜色空间图像相关色域映射方法,通过设置参数来动态调整颜色映射的精准度与灰度图像层次纹理信息的保持程度,实现灰度图像保持颜色纹理的同时实现颜色的精准映射。

    基于单样例引导物体表征拆分的图像编辑方法

    公开(公告)号:CN112381168B

    公开(公告)日:2022-04-01

    申请号:CN202011318081.1

    申请日:2020-11-23

    Abstract: 基于单样例引导物体表征拆分的图像编辑算法,包括下列步骤:1)基于单样例的监督模块构建;2)单样例引导下的自监督模块中的对偶策略构建;3)单样例引导下的自监督模块中的模糊分类策略构建4)基于单样例标注图像引导物体表征拆分的图像编辑。通过上述步骤建立的基于单样例引导物体表征拆分的图像编辑算法,只需要为每一类别图像标注一个样本形成单样例样本,利用单样例样本引导大量无标注数据训练的方式,通过单样例的监督模块和单样例引导无标注数据的自监督模块,实现复杂场景的前景物体和背景表征拆分,使得在图像表征空间即可直接操作图像,轻松实现相关图像编辑任务。

    基于单样例引导物体表征拆分的图像编辑算法

    公开(公告)号:CN112381168A

    公开(公告)日:2021-02-19

    申请号:CN202011318081.1

    申请日:2020-11-23

    Abstract: 基于单样例引导物体表征拆分的图像编辑算法,包括下列步骤:1)基于单样例的监督模块构建;2)单样例引导下的自监督模块中的对偶策略构建;3)单样例引导下的自监督模块中的模糊分类策略构建4)基于单样例标注图像引导物体表征拆分的图像编辑。通过上述步骤建立的基于单样例引导物体表征拆分的图像编辑算法,只需要为每一类别图像标注一个样本形成单样例样本,利用单样例样本引导大量无标注数据训练的方式,通过单样例的监督模块和单样例引导无标注数据的自监督模块,实现复杂场景的前景物体和背景表征拆分,使得在图像表征空间即可直接操作图像,轻松实现相关图像编辑任务。

Patent Agency Ranking