-
公开(公告)号:CN115361453A
公开(公告)日:2022-11-18
申请号:CN202210994286.4
申请日:2022-08-17
Applicant: 浙江大学中原研究院
IPC: H04L67/63 , H04L67/1004 , H04L41/0823 , H04L41/16
Abstract: 本发明公开了一种面向边缘服务网络的负载公平卸载与迁移方法,以边缘系统执行的所有用户任务的效用函数帕累托最优为优化目标,这种方法不仅兼顾了边缘网络资源的约束,也同样保障了系统中所有用户任务的效用函数的最大化,对提升多用户竞争下的任务效用质量提出来一种新的量化衡量指标。此外,本发明采用了图神经网络与强化学习算法对最终优化目标求解,这种算法执行效率高,返回的近似结果较为准确,特别适合于多用户复杂任务的下的边缘网络系统的场景,使得在多用户任务竞争网络资源的时候,边缘计算网络系统可以高效的得出多用户效用函数帕累托最优的结果,大大提高了边缘网络环境的服务质量和用户体验。
-
公开(公告)号:CN114371936B
公开(公告)日:2025-02-28
申请号:CN202210004782.0
申请日:2022-01-04
IPC: G06F9/50
Abstract: 本发明公开了一种多服务器作业的优化调度方法,涉及云计算相关技术领域,包括提出一种通用的、基于二分图的群组调度模型,优化目标为Asw最大化;基于该模型,提出一种通过历史奖励数据来学习MSJ在不同服务器上运行时间的期望和方差的框架;基于该学习框架,提出一种基于遗传算法的Asw最大化策略,能够在保证多种类型的约束成立的条件下使得社会整体收益最大。本发明针对多服务器作业,提出了一种可以主动式学习作业完成速率、并同时最大化累积社会效益的群组调度方法,可优化累积社会效益,平衡社会各方利益,追求社会整体利益最大化,所设计的调度策略,企业可显著节省计算成本,提高生产收益比。
-
公开(公告)号:CN114371936A
公开(公告)日:2022-04-19
申请号:CN202210004782.0
申请日:2022-01-04
IPC: G06F9/50
Abstract: 本发明公开了一种多服务器作业的优化调度方法,涉及云计算相关技术领域,包括提出一种通用的、基于二分图的群组调度模型,优化目标为Asw最大化;基于该模型,提出一种通过历史奖励数据来学习MSJ在不同服务器上运行时间的期望和方差的框架;基于该学习框架,提出一种基于遗传算法的Asw最大化策略,能够在保证多种类型的约束成立的条件下使得社会整体收益最大。本发明针对多服务器作业,提出了一种可以主动式学习作业完成速率、并同时最大化累积社会效益的群组调度方法,可优化累积社会效益,平衡社会各方利益,追求社会整体利益最大化,所设计的调度策略,企业可显著节省计算成本,提高生产收益比。
-
公开(公告)号:CN115361453B
公开(公告)日:2023-09-29
申请号:CN202210994286.4
申请日:2022-08-17
Applicant: 浙江大学中原研究院
IPC: H04L67/63 , H04L67/1004 , H04L41/0823 , H04L41/16
Abstract: 本发明公开了一种面向边缘服务网络的负载公平卸载与迁移方法,以边缘系统执行的所有用户任务的效用函数帕累托最优为优化目标,这种方法不仅兼顾了边缘网络资源的约束,也同样保障了系统中所有用户任务的效用函数的最大化,对提升多用户竞争下的任务效用质量提出来一种新的量化衡量指标。此外,本发明采用了图神经网络与强化学习算法对最终优化目标求解,这种算法执行效率高,返回的近似结果较为准确,特别适合于多用户复杂任务的下的边缘网络系统的场景,使得在多用户任务竞争网络资源的时候,边缘计算网络系统可以高效的得出多用户效用函数帕累托最优的结果,大大提高了边缘网络环境的服务质量和用户体验。
-
-
-