-
公开(公告)号:CN116543233A
公开(公告)日:2023-08-04
申请号:CN202310638294.X
申请日:2023-06-01
Applicant: 浙江大学
IPC: G06V10/764 , G06V10/82 , G06F18/243
Abstract: 本发明公开了一种基于频繁项集的图像多标签分类方法,包括如下步骤:(1)在图像数据集中,使用频繁项集挖掘算法挖掘出数据集的频繁项集;(2)利用挖掘出的频繁项集构建树形结构的图像多标签分类网络;(3)将特征提取网络和图像多标签分类网络结合得到总分类网络,其中,特征提取网络输出的特征向量作为图像多标签分类网络的输入;(4)训练总分类网络模型直至模型收敛;(5)将待分类的图像输入训练好的总分类网络模型中,得到多标签的分类结果。本发明通过频繁项集挖掘算法生成的频繁项集自动生成更为合理的图像多标签分类网络,可以提供更高的图像多标签分类精度。