一种面向智能安防的视觉深度模型知识重组方法

    公开(公告)号:CN114330554B

    公开(公告)日:2025-04-08

    申请号:CN202111639661.5

    申请日:2021-12-29

    Applicant: 浙江大学

    Abstract: 一种面向智能安防的视觉深度模型知识重组方法,首先,收集安防边缘测的视觉数据,明确模型任务,收集数据进行标注,训练目标任务模型。然后,利用归因图计算目标模型和不同预训练模型之间的可迁移分数,将归一化的可迁移分数作为模型选择的概率,可放回地采样形成模型集合;在联邦学习范式的基础上,将目标模型分发到不同的节点,利用表征蒸馏迁移预训练模型的特征提取能力,在目标模型学习和迁移完成后,通过平均的方式在中心节点进行知识重组,重组过后的模型再次分发到选择的模型节点进一步迭代。最后,再利用目标数据集进行微调目标模型,从而学习得到一个在智能安防领域的目标任务上表现良好的视觉深度模型,并且保护了数据隐私和模型隐私。

    一种面向智能安防的视觉深度模型知识重组方法

    公开(公告)号:CN114330554A

    公开(公告)日:2022-04-12

    申请号:CN202111639661.5

    申请日:2021-12-29

    Applicant: 浙江大学

    Abstract: 一种面向智能安防的视觉深度模型知识重组方法,首先,收集安防边缘测的视觉数据,明确模型任务,收集数据进行标注,训练目标任务模型。然后,利用归因图计算目标模型和不同预训练模型之间的可迁移分数,将归一化的可迁移分数作为模型选择的概率,可放回地采样形成模型集合;在联邦学习范式的基础上,将目标模型分发到不同的节点,利用表征蒸馏迁移预训练模型的特征提取能力,在目标模型学习和迁移完成后,通过平均的方式在中心节点进行知识重组,重组过后的模型再次分发到选择的模型节点进一步迭代。最后,再利用目标数据集进行微调目标模型,从而学习得到一个在智能安防领域的目标任务上表现良好的视觉深度模型,并且保护了数据隐私和模型隐私。

Patent Agency Ranking