一种面向人脸识别隐私保护的对抗性特征生成方法

    公开(公告)号:CN116778544B

    公开(公告)日:2024-04-16

    申请号:CN202310212400.8

    申请日:2023-03-07

    Applicant: 浙江大学

    Abstract: 本发明公开了一种面向人脸识别隐私保护的对抗性特征生成方法,建立了一个影子模型,以获取从面部特征到图像的映射函数,通过解决约束优化问题生成对抗性潜在噪声来破坏映射,并由此提出了一种保护隐私的对抗性特征,其在面对未知结构的攻击网络时能保持优异的防御性能,可以在保持人脸识别准确性的同时抵御未知重构攻击,有效保护人脸隐私安全,本发明实用性高,不需要更改已部署的人脸识别模型,可以作为隐私增强模块快速集成到现有人脸识别系统中,使其满足保护人脸隐私的需求;也可以选择性优化身份识别网络,以满足更高识别精度的要求。

    一种面向人脸识别隐私保护的对抗性特征生成方法

    公开(公告)号:CN116778544A

    公开(公告)日:2023-09-19

    申请号:CN202310212400.8

    申请日:2023-03-07

    Applicant: 浙江大学

    Abstract: 本发明公开了一种面向人脸识别隐私保护的对抗性特征生成方法,建立了一个影子模型,以获取从面部特征到图像的映射函数,通过解决约束优化问题生成对抗性潜在噪声来破坏映射,并由此提出了一种保护隐私的对抗性特征,其在面对未知结构的攻击网络时能保持优异的防御性能,可以在保持人脸识别准确性的同时抵御未知重构攻击,有效保护人脸隐私安全,本发明实用性高,不需要更改已部署的人脸识别模型,可以作为隐私增强模块快速集成到现有人脸识别系统中,使其满足保护人脸隐私的需求;也可以选择性优化身份识别网络,以满足更高识别精度的要求。

Patent Agency Ranking