-
公开(公告)号:CN114778542A
公开(公告)日:2022-07-22
申请号:CN202210472715.1
申请日:2022-04-29
Applicant: 浙江大学
Abstract: 本发明公开了一种基于棱镜的光源集成型超分辨显微芯片及其成像方法,涉及超分辨显微领域。本发明基于块状高折射基底材料,在其上表面中心设置样品区域,在其下表面设有多圈不同角度的棱镜,将LED分别置于棱镜侧面,再将LED的正负极集成到PCB板上,通过单片机控制LED的开关。相比于外接光路的超分辨显微成像系统,将光源集成到超分辨显微芯片上可实现超分辨成像的小型化和便携性,便于应用于资源紧缺地区的医疗诊断和科研分析。相比于传统的傅里叶叠层显微成像(FPM),利用棱镜可提高斜入射光源的光强和信噪比以及斜入射范围,引入更大横向波矢的倏逝波,可有效提高成像质量以及分辨率。
-
公开(公告)号:CN115236079A
公开(公告)日:2022-10-25
申请号:CN202210858811.X
申请日:2022-07-20
Applicant: 浙江大学
Abstract: 本发明公开了一种基于超构表面薄膜的深移频无标记超分辨成像芯片及其系统和方法,属于移频超分辨显微成像领域。芯片包括在照明光波段透明且两面平整的衬底;所述衬底的上表面具有用于激发超高波矢表面等离激元的若干微结构,衬底的上表面还设有能将所有微结构覆盖的超构表面薄膜;超构表面薄膜为由金属膜与非金属膜纵向周期性排列组成,用于支持超高波矢表面等离激元的传输。本发明通过控制金属薄膜与非金属薄膜材料的种类、每层薄膜厚度、超构表面总厚度和照明波长等,可以设计出有效折射率远高于天然光学材料的双曲超构表面,从而进一步提升移频超分辨成像技术的分辨率,实现亚50纳米超分辨成像。
-
公开(公告)号:CN115951487A
公开(公告)日:2023-04-11
申请号:CN202211540944.9
申请日:2022-12-02
Applicant: 浙江大学
Abstract: 本发明公开了一种基于多波长点阵并行照明的移频超分辨显微成像系统及方法,属于超分辨显微领域。系统中的照明模块包括位于第一物镜后焦面上的多波长点光源阵列和第一物镜,多波长点光源阵列上的各处点光源具有不同波长且能够同时照明;探测模块包括第二物镜、分光器件、筒镜和成像相机;分光器件在第二物镜后方设有若干个,用于将散射光中不同波长成分离散到不同探测光路上通过筒镜和成像相机实现不同移频图像的并行探测。本发明将FPM移频成像技术的照明方案从单波长光源阵列依次照明拓展至多波长光源阵列并行照明,并相应的在探测端引入多路成像相机实现移频图像的并行采集,最终在不牺牲成像分辨率的情况下,将FPM的成像速度提升了数十倍。
-
公开(公告)号:CN115903331A
公开(公告)日:2023-04-04
申请号:CN202211409763.2
申请日:2022-11-10
Applicant: 浙江大学
Abstract: 本发明公开了一种基于非线性倏逝场的深移频超分辨显微芯片及其成像方法,属于移频超分辨显微成像领域。深移频超分辨成像芯片包括由下至上依次堆叠设置的衬底层、非线性光学材料膜层、表面等离激元膜系和微结构层;表面等离激元膜系和微结构层的中央区域整体贯穿开设有多边形孔槽,暴露出的部分非线性光学材料膜层作为成像样品放置区;环绕多边形孔槽,微结构层的上表面刻设有若干组微结构。本发明利用非线性四波混频效应激发、调控和增强超大波矢倏逝场并应用于移频超分辨成像,解决了天然波导材料提供的倏逝场波矢有限且波矢越大信号较弱的问题,可在保证成像质量的前提下突破现有线性移频超分辨成像技术的分辨率上限。
-
-
-