-
公开(公告)号:CN114663657B
公开(公告)日:2025-04-18
申请号:CN202210249636.4
申请日:2022-03-14
Applicant: 浙江大学
IPC: G06V10/26 , G06V10/764 , G06V10/774
Abstract: 本发明公开了一种偏差上下文信息修正的增量语义分割方法。该方法首先获取多个类别的语义分割数据流,并划分为多个训练数据集;在第一个增量语义分割学习步骤中,以一个训练数据集学习得到初始语义分割网络模型;在下一个增量语义分割学习步骤中,以擦除新类像素点的方法对新获得的包含新类别的训练数据集,产生偏差上下文信息修正的图片对,构建偏差上下文信息修正的训练数据集,基于偏差上下文信息修正的训练数据集,以偏差上下文信息修正和自适应类平衡的学习方法更新最新的增量语义分割网络模型。本发明能有效地修正旧类像素点的偏向新类的上下文信息和缓解偏差的类分布问题,减少对旧类知识的遗忘和对背景类别的语义漂移。
-
公开(公告)号:CN114663657A
公开(公告)日:2022-06-24
申请号:CN202210249636.4
申请日:2022-03-14
Applicant: 浙江大学
IPC: G06V10/26 , G06V10/764 , G06V10/774 , G06K9/62
Abstract: 本发明公开了一种偏差上下文信息修正的增量语义分割方法。该方法首先获取多个类别的语义分割数据流,并划分为多个训练数据集;在第一个增量语义分割学习步骤中,以一个训练数据集学习得到初始语义分割网络模型;在下一个增量语义分割学习步骤中,以擦除新类像素点的方法对新获得的包含新类别的训练数据集,产生偏差上下文信息修正的图片对,构建偏差上下文信息修正的训练数据集,基于偏差上下文信息修正的训练数据集,以偏差上下文信息修正和自适应类平衡的学习方法更新最新的增量语义分割网络模型。本发明能有效地修正旧类像素点的偏向新类的上下文信息和缓解偏差的类分布问题,减少对旧类知识的遗忘和对背景类别的语义漂移。
-