-
公开(公告)号:CN119445194A
公开(公告)日:2025-02-14
申请号:CN202411356507.0
申请日:2024-09-27
Applicant: 浙江大学软件学院(宁波)管理中心(宁波软件教育中心)
IPC: G06V10/764 , G06N3/084 , G06N3/0464 , G06N3/0895 , G06T7/00 , G06T7/73
Abstract: 本发明公开了一种位置自监督的结直肠CT图像病变识别与定位方法,其通过自动化图像级分类和Patch级定位,显著减少医生工作量,并通过自监督学习减少对标注数据的依赖,具体包括构建多模态CT扫描序列数据集,关键帧选取与标注,图像预处理,以及结直肠CT图像识别与定位网络的构建和训练;网络包含图像级分类分支和Patch级定位分支,后者通过病变位置自监督模块增强病变区域识别;方法还包括时序和模态一致性约束,以提高病变区域位置定位的准确性;此外,方法通过掩码校正回路策略,增强类别标签与病变位置的一致性;本发明方法作为辅助工具,能够有效辅助医生进行手术规划和治疗选择,具有重要的临床应用价值。
-
公开(公告)号:CN117011525A
公开(公告)日:2023-11-07
申请号:CN202310880957.9
申请日:2023-07-18
Applicant: 浙江大学
IPC: G06V10/26 , G06V10/40 , G06V10/80 , G06V10/82 , G06N3/0985 , G06N3/0495
Abstract: 一种面向视觉大模型的解耦优化算法和系统,其算法包括以下步骤:1)提取类别语义特征;2)类别语义特征优化;3)根据类别语义信息压缩模型参数。本发明找到与特定任务相关的类别语义信息,取代交互式大模型的提示信息,完成特定任务解耦,同时通过增加硬编码,从而完成对模型架构的缩减与整体网络性能的优化。
-
公开(公告)号:CN119091134A
公开(公告)日:2024-12-06
申请号:CN202411018850.4
申请日:2024-07-29
Applicant: 浙江大学软件学院(宁波)管理中心(宁波软件教育中心)
IPC: G06V10/26 , G06V10/82 , G06V10/774
Abstract: 本发明公开了一种基于深度语义分割优化模型的图像分割方法,特点是根据预设的训练参数,使用公开的语义分割数据集VOC2012的训练集根据交叉熵损失函数对设置有编码器的待训练的深度语义分割模型进行训练,获取每一轮次训练得出的权重文件,基于公开的语义分割数据集VOC2012的验证集对所有权重文件进行验证,筛选出mIoU值最高的权重文件,得到该权重文件所对应的预训练的深度语义分割模型;通过基于语义类别和区域边界偏差修正的优化方法或基于局部噪声消除的优化方法对预训练的深度语义分割模型进行优化,得到优化后的深度语义分割优化模型;将待检测的图像输入至深度语义分割优化模型中进行语义分割,得到语义分割结果;优点是提高了语义分割精度。
-
-