针对大象流的SDN数据中心网络负载均衡方法及系统

    公开(公告)号:CN116208560B

    公开(公告)日:2024-04-30

    申请号:CN202310225444.4

    申请日:2023-03-03

    Applicant: 济南大学

    Abstract: 本发明提出了针对大象流的SDN数据中心网络负载均衡方法及系统,涉及网络技术领域,具体方案包括:实时探测感知SDN数据中心网络的拓扑结构,基于构建的网络拓扑图,检测链路的拥塞程度,根据拥塞程度动态调整采样周期;根据所述采样周期进行采样,通过两阶段双阈值的方法,对得到的样本进行大象流的识别;根据最小化丢包率、最大化吞吐量以及更高的路径选择概率设计奖励函数,为识别到的大象流实时计算最优路径,并重路由到最优路径;本发明能够为基于SDN技术下的数据中心网络提供一种智能动态的负载均衡方法,使得基于SDN技术下的数据中心流量拥塞以及网络延迟的问题得以缓解,同时解决带宽碎片化问题,提高网络的性能与带宽利用率。

    针对大象流的SDN数据中心网络负载均衡方法及系统

    公开(公告)号:CN116208560A

    公开(公告)日:2023-06-02

    申请号:CN202310225444.4

    申请日:2023-03-03

    Applicant: 济南大学

    Abstract: 本发明提出了针对大象流的SDN数据中心网络负载均衡方法及系统,涉及网络技术领域,具体方案包括:实时探测感知SDN数据中心网络的拓扑结构,基于构建的网络拓扑图,检测链路的拥塞程度,根据拥塞程度动态调整采样周期;根据所述采样周期进行采样,通过两阶段双阈值的方法,对得到的样本进行大象流的识别;根据最小化丢包率、最大化吞吐量以及更高的路径选择概率设计奖励函数,为识别到的大象流实时计算最优路径,并重路由到最优路径;本发明能够为基于SDN技术下的数据中心网络提供一种智能动态的负载均衡方法,使得基于SDN技术下的数据中心流量拥塞以及网络延迟的问题得以缓解,同时解决带宽碎片化问题,提高网络的性能与带宽利用率。

Patent Agency Ranking