-
公开(公告)号:CN111440850B
公开(公告)日:2022-11-25
申请号:CN202010273609.1
申请日:2020-04-09
Applicant: 济南大学
IPC: C12Q1/682 , C12Q1/6825 , C12Q1/44 , G01N21/76
Abstract: 本发明涉及生物传感器技术领域,特别涉及基于DNAzyme的DNA Walker的化学生物传感器。为了解决以上现有技术中检测啶虫脒的方法特异性和灵敏度都比较低、成本高的问题。一种基于DNAzyme的DNA Walker检测啶虫脒的化学生物传感器,利用DNAzyme裂解辅助实现循环放大,以及在金纳米颗粒形成许多模拟辣根过氧化物酶活性的G‑四联体。制备方法:制备金纳米颗粒;将Walker链与Lock链修饰到金纳米粒子表面;标记的纳米金颗粒溶液的均相反应;DNAzyme裂解反应、化学发光检测;利用核酸适配体对目标物啶虫脒的高特异性检测;利用DNAzyme裂解反应放大,实现信号放大的作用。
-
公开(公告)号:CN110501411B
公开(公告)日:2021-07-16
申请号:CN201910874445.5
申请日:2019-09-17
Applicant: 济南大学
IPC: G01N27/48 , G01N27/327
Abstract: 本发明涉及一种基于核酸适配体无酶检测氨苄青霉素的电化学生物传感器,属于电化学生物传感器技术领域。本发明基于目标诱导的核酸适配体构象变化及催化发夹自组装扩增(CHA)和链置换策略检测氨苄青霉素,实现了多重的信号放大,降低了检测限,提高了灵敏度,并且金电极简便、小型化、易携带、可多次使用;实现了目标物的,简单,灵敏的检测。制备方法简单,性能稳定,电极的重复性好,并且反应过程不需要酶参与,极大的降低了成本。故适用于食品安全中氨苄青霉素的检测和生物传感器产业化的实际应用。
-
公开(公告)号:CN110441277A
公开(公告)日:2019-11-12
申请号:CN201910752467.4
申请日:2019-08-15
Applicant: 济南大学
IPC: G01N21/64
Abstract: 本发明涉及生物传感器技术领域,特别涉及基于杂交连锁反应放大的荧光生物传感器。为了解决以上现有技术中检测氨苄青霉素的方法特异性和灵敏度都比较低、成本高的问题。一种基于核酸适配体检测氨苄青霉素的生物传感器,将切刻内切酶Nb.BbcCI与链杂交连锁反应的配合实现循环放大作用,以及硫黄素T与G-四联体结合产生荧光,均相反应混合液。制备方法:制备金纳米粒子;将Walker与Track修饰到金纳米粒子表面;将标记的纳米金溶液与均相反应溶液混合;超支化杂交连锁反应、荧光检测;利用了核酸适配体的特异型识别,利用核酸适配体对目标物氨苄青霉素的高特异性检测;利用超支化杂交连锁反应放大,实现信号放大的作用。
-
公开(公告)号:CN109596592A
公开(公告)日:2019-04-09
申请号:CN201910091120.X
申请日:2019-01-30
Applicant: 济南大学
IPC: G01N21/64
Abstract: 本发明涉及生物传感器技术领域,特别涉及基于核酸适配体检测沙门氏菌的生物传感器,包括适配体Apt、模板T、发卡探针H1、发卡探针H2、phi29、沙门氏菌、Nt.Alwl内切酶和缓冲液;基于核酸适配体与目标物的特异性识别,将Apt与T形成的桥型结构打开,利用Phi 29聚合酶的链延伸功能打开H2产生荧光,以及3’翘起部分特异性消化实现目标物的循环放大,在Nt.Alwl内切酶的协助下,产生大量能打开H1的Trigger链,而Trigger进一步循环实现荧光信号的放大,从而构建了适体生物传感器,该传感器反应只需要一步,因此具有检测速度快,操作简便,价格低廉,检测限低,特异性高等优点。
-
公开(公告)号:CN110542674B
公开(公告)日:2021-10-22
申请号:CN201910887031.6
申请日:2019-09-19
Applicant: 济南大学
IPC: G01N21/76
Abstract: 本发明涉及生物传感器技术领域,基于金纳米粒子的DNA分子机器检测谷胱甘肽(GSH)的生物传感器,包括发卡探针HAP(茎部修饰二硫键)、复合探针P通过polyA修饰到纳米金的表面、P3探针、血红素、钾离子、目标物GSH、纳米金和缓冲液;基于目标物GSH对二硫键的裂解功能,使得发夹结构被破坏,释放Walker核酸链,释放的Walker核酸链和P3探针可以通过支点介导的链置换反应将P2从复合探针P上置换下来,P2为富含G‑四联体的序列,在存在血红素时形成G‑四联体/血红素DNA酶,从而构建了适体生物传感器,该传感器反应只需要一步,因此具有检测速度快,操作简便,价格低廉,检测限低,特异性高等优点。
-
公开(公告)号:CN109507254B
公开(公告)日:2020-09-29
申请号:CN201811588936.5
申请日:2018-12-25
Applicant: 济南大学
IPC: G01N27/30 , G01N27/327
Abstract: 本发明涉及一种基于核酸适配体检测卡那霉素的生物传感器,属于电化学生物传感器技术领域。利用具有识别切割功能的Nt.BbvCI内切酶,实现了primer的循环利用,放大了检测信号,提高了检测的灵敏度;利用了核酸外切酶III的特异性的识别和水解作用实现了第二步循环放大,进一步提高了检测的灵敏度。本发明的电化学生物传感器可以高特异性检测;该传感器的反应条件温和,反应速度快;作电极的工艺成本低,适用于产业化中价廉的要求,适用于食品安全中卡那霉素的检测和生物传感器产业化的实际应用。
-
公开(公告)号:CN110609020A
公开(公告)日:2019-12-24
申请号:CN201910754057.3
申请日:2019-08-15
Applicant: 济南大学
IPC: G01N21/64
Abstract: 本发明涉及生物传感器技术领域,特别涉及基于回文分子信标检测三磷酸腺苷(ATP)的生物传感器,包括回文分子信标MB、ATP适配体(劈开的适配体探针AP1、AP2)、目标物ATP、Bst DNA聚合酶、UDG、核酸内切酶IV和缓冲液;基于核酸适配体与目标物的特异性识别,从而使两个劈开的适配体片段尾部序列邻近,将回文分子信标MB的发夹结构打开产生荧光,与此同时预锁定的回文序列被释放,进行分子间的杂交,从而触发自发聚合、修复、内切、循环过程,实现荧光信号的放大,从而构建了适体生物传感器,该传感器反应只需要一步,因此具有检测速度快,操作简便,价格低廉,检测限低,特异性高等优点。
-
公开(公告)号:CN109507168A
公开(公告)日:2019-03-22
申请号:CN201811568677.X
申请日:2018-12-21
Applicant: 济南大学
IPC: G01N21/65
Abstract: 本发明涉及生物传感器技术领域,特别涉及基于纳米金颗粒团聚产生表面增强拉曼散射检测ATP(三磷酸腺苷)活性的生物传感器,利用ATP能够和其核酸适配体(Aptamer)特异性结合的特性,将纳米金颗粒表面的Walker Chain释放,从而利用核酸酶将纳米金表面更短的Track Chain催化水解,致使纳米金颗粒失去了核酸链保护,在高盐缓冲液中团聚,产生表面等离子体共振效应,极大的增强金纳米颗粒表面电磁场强度,使标记在纳米金颗粒表面的拉曼染料产生表面增强拉曼散射(SERS)效应,在特定的位置出现拉曼光谱;当反应液中不存在ATP时,无法将Protect Chain置换下来,从而无法进行后续的纳米金团聚的反应,进而没拉曼散射光谱产生;本发明通过修饰于纳米金颗粒表面的核酸链做底物实现了快速、灵敏、安全的ATP活性检测。
-
公开(公告)号:CN110441277B
公开(公告)日:2021-08-17
申请号:CN201910752467.4
申请日:2019-08-15
Applicant: 济南大学
IPC: G01N21/64
Abstract: 本发明涉及生物传感器技术领域,特别涉及基于杂交连锁反应放大的荧光生物传感器。为了解决以上现有技术中检测氨苄青霉素的方法特异性和灵敏度都比较低、成本高的问题。一种基于核酸适配体检测氨苄青霉素的生物传感器,将切刻内切酶Nb.BbcCI与链杂交连锁反应的配合实现循环放大作用,以及硫黄素T与G‑四联体结合产生荧光,均相反应混合液。制备方法:制备金纳米粒子;将Walker与Track修饰到金纳米粒子表面;将标记的纳米金溶液与均相反应溶液混合;超支化杂交连锁反应、荧光检测;利用了核酸适配体的特异型识别,利用核酸适配体对目标物氨苄青霉素的高特异性检测;利用超支化杂交连锁反应放大,实现信号放大的作用。
-
公开(公告)号:CN109444102B
公开(公告)日:2021-03-23
申请号:CN201811547164.0
申请日:2018-12-18
Applicant: 济南大学
IPC: G01N21/64
Abstract: 本发明涉及生物传感器技术领域,特别涉及基于滚环扩增介导催化发夹自组装和内切酶反馈放大方法检测赭曲霉毒素A的荧光生物传感器。该发明的检测方式是荧光法检测,利用荧光仪。在检测之前,先将挂锁探针和连接探针形成环形模板探针。然后将目标物加入到复合探针I、复合探针II和HP2、HP3的均相溶液,在37℃孵育120 min,目标物与适配体序列绑定。在phi29 DNA聚合酶和核酸内切酶IV作用下完成多倍数反馈放大过程,从而实现信号的放大。然后用荧光仪设置激发波长为399 nm,检测610 nm处荧光强度,检测范围为560 nm‑640 nm。同时本发明还提供了该生物传感器的制备方法,该方法反应条件温和,易于操作。
-
-
-
-
-
-
-
-
-