-
公开(公告)号:CN119692437A
公开(公告)日:2025-03-25
申请号:CN202510192098.3
申请日:2025-02-21
Applicant: 泉城省实验室
IPC: G06N3/098 , G06N3/084 , G06N3/0464 , G06F18/23
Abstract: 本发明涉及针对异构资源的隐私增强自适应聚类联邦学习方法及系统,属于联邦学习技术领域。包括:(1)基于上行时延的参与方聚类;应用不同的聚类标准对异构设备进行聚类;(2)算力相似簇内的本地训练;根据设备计算能力对用户进行聚类,优化训练效率;(3)基于谱嵌入的安全簇模型聚合;采用基于梯度向量相似性的软聚类,允许用户模型聚合成多个聚类模型,并使用多个聚类模型更新本地模型。本发明通过在聚类过程中对用户的梯度向量进行混洗来确保隐私和机密性。此外,方法采用同态加密和双线性聚合签名来验证用户身份并保护梯度共享。
-
公开(公告)号:CN119692437B
公开(公告)日:2025-05-16
申请号:CN202510192098.3
申请日:2025-02-21
Applicant: 泉城省实验室
IPC: G06N3/098 , G06N3/084 , G06N3/0464 , G06F18/23
Abstract: 本发明涉及针对异构资源的隐私增强自适应聚类联邦学习方法及系统,属于联邦学习技术领域。包括:(1)基于上行时延的参与方聚类;应用不同的聚类标准对异构设备进行聚类;(2)算力相似簇内的本地训练;根据设备计算能力对用户进行聚类,优化训练效率;(3)基于谱嵌入的安全簇模型聚合;采用基于梯度向量相似性的软聚类,允许用户模型聚合成多个聚类模型,并使用多个聚类模型更新本地模型。本发明通过在聚类过程中对用户的梯度向量进行混洗来确保隐私和机密性。此外,方法采用同态加密和双线性聚合签名来验证用户身份并保护梯度共享。
-
公开(公告)号:CN118940865A
公开(公告)日:2024-11-12
申请号:CN202411419064.5
申请日:2024-10-12
Applicant: 泉城省实验室
Abstract: 本发明涉及基于委员会共识的鲁棒高效去中心化联邦学习方法及系统,属于联邦学习技术领域,包括:1)委员会成员选举;2)使用全局模型进行本地模型训练;3)模型验证,对通过验证的训练者进行打分;4)当有足够多的连续更新区块时,智能合约将自动调用,对区块链上的模型更新进行聚合,生成新的全局模型,并计算每个参与者在本轮训练中的贡献度,根据贡献度选择出下一轮训练中的委员会成员;5)各参与者下载最新的区块,将新的全局模型作为下一轮训练中的初始模型;上述操作重复进行,直至模型收敛。本发明有效解决因中心服务器的存在所导致的单点故障以及恶意服务器作恶问题的同时,提高了模型聚合的准确性、速度和效率。
-
-