基于改进逻辑回归分类的人群异常行为检测方法

    公开(公告)号:CN111401225A

    公开(公告)日:2020-07-10

    申请号:CN202010174262.5

    申请日:2020-03-13

    Abstract: 本发明公开了一种基于改进逻辑回归分类的人群异常行为检测方法,具体步骤包括:步骤1:提取正常行为人的运动前景和有异常行为人的运动前景;步骤2:采用Lucas-Kanada光流法提取正常行为人的U、V光流矢量和有异常行为人的U、V光流矢量;步骤3:采用正弦变换学习率的方法改进逻辑回归分类算法;步骤4:将两种运动前景的U、V光流矢量当中的一部分输入至改进的逻辑回归分类算法中进行训练,从而得到具有最佳超参数的网络模型;步骤5:将剩余部分作为测试集运用到训练好的网络模型中测试算法的性能。本发明模型构建简单,对人群拥挤、遮挡严重的情况仍然保持较高的检测精度,而且检测速度快,泛化性能好,不仅能满足实时性的要求,还能适应多种场景。

    基于改进逻辑回归分类的人群异常行为检测方法

    公开(公告)号:CN111401225B

    公开(公告)日:2022-08-30

    申请号:CN202010174262.5

    申请日:2020-03-13

    Abstract: 本发明公开了一种基于改进逻辑回归分类的人群异常行为检测方法,具体步骤包括:步骤1:提取正常行为人的运动前景和有异常行为人的运动前景;步骤2:采用Lucas‑Kanada光流法提取正常行为人的U、V光流矢量和有异常行为人的U、V光流矢量;步骤3:采用正弦变换学习率的方法改进逻辑回归分类算法;步骤4:将两种运动前景的U、V光流矢量当中的一部分输入至改进的逻辑回归分类算法中进行训练,从而得到具有最佳超参数的网络模型;步骤5:将剩余部分作为测试集运用到训练好的网络模型中测试算法的性能。本发明模型构建简单,对人群拥挤、遮挡严重的情况仍然保持较高的检测精度,而且检测速度快,泛化性能好,不仅能满足实时性的要求,还能适应多种场景。

Patent Agency Ranking