-
公开(公告)号:CN118397531A
公开(公告)日:2024-07-26
申请号:CN202410330434.1
申请日:2024-03-21
Applicant: 河海大学
IPC: G06V20/52 , G06V20/40 , G06V10/764 , G06V10/774
Abstract: 本发明公开了一种基于深度学习轻量化网络的水面漂浮物检测方法,方法包括:首先通过视频监控系统的摄像头采集河道监控场景视频帧图像,按照不同光照条件对图像进行筛选,并在筛选后的图像中对不同目标分类标注,目标类别包括秸秆、瓶子、树枝、塑料袋、船、鸟、水草、垃圾,共8类;对秸秆、树枝、船、鸟四类样本较少的目标采用mixup原理增强样本数量,达到每类目标的样本数量至少300张,构建完成水面多目标检测样本数据集;其次,面向水面漂浮物数据集对YOLOv5s进行模型设计及预训练;再次,对YOLOv5s模型进行稀疏训练,模型剪枝,完成模型压缩,实现模型轻量化,模型大小为6.8M;最后,将视频帧图像输入轻量化模型实现河道漂浮物的智能实时监测。