一种基于多特征融合的遥感图像分类方法

    公开(公告)号:CN102622607A

    公开(公告)日:2012-08-01

    申请号:CN201210043064.0

    申请日:2012-02-24

    Applicant: 河海大学

    Abstract: 本发明公开了一种基于多特征融合的遥感图像分类方法,包括以下步骤:步骤A、分别提取训练集遥感图像的视觉词袋特征、颜色直方图特征和纹理特征;步骤B、分别利用训练集遥感图像的视觉词袋特征、颜色直方图特征和纹理特征进行支持向量机训练,得到三个不同的支持向量机分类器;步骤C、对于未知的测试样本,分别提取其视觉词袋特征、颜色直方图特征和纹理特征,并利用步骤B中所得到的相应的支持向量机分类器进行类别预测,得到三组类别预测结果,然后采用加权综合法对三组类别预测结果进行综合,从而得到最终的分类结果。本发明进一步采用改进的词袋模型进行视觉词袋特征提取。相比现有技术,本发明可以获得更精确的分类结果。

    一种基于多特征融合的遥感图像分类方法

    公开(公告)号:CN102622607B

    公开(公告)日:2013-09-25

    申请号:CN201210043064.0

    申请日:2012-02-24

    Applicant: 河海大学

    Abstract: 本发明公开了一种基于多特征融合的遥感图像分类方法,包括以下步骤:步骤A、分别提取训练集遥感图像的视觉词袋特征、颜色直方图特征和纹理特征;步骤B、分别利用训练集遥感图像的视觉词袋特征、颜色直方图特征和纹理特征进行支持向量机训练,得到三个不同的支持向量机分类器;步骤C、对于未知的测试样本,分别提取其视觉词袋特征、颜色直方图特征和纹理特征,并利用步骤B中所得到的相应的支持向量机分类器进行类别预测,得到三组类别预测结果,然后采用加权综合法对三组类别预测结果进行综合,从而得到最终的分类结果。本发明进一步采用改进的词袋模型进行视觉词袋特征提取。相比现有技术,本发明可以获得更精确的分类结果。

Patent Agency Ranking