-
公开(公告)号:CN114913523B
公开(公告)日:2024-02-20
申请号:CN202210601781.4
申请日:2022-05-30
Applicant: 河南大学
Abstract: 本发明涉及智慧农业技术领域,具体涉及基于YOLOX的植物气孔多功能实时智能识别系统,该系统包括数据采集模块、迁移学习模块、标签分类模块、网络模型训练模块以及气孔识别模块。采集植物叶表皮图像,将叶表皮图像分为单目标检测数据集和双目标检测数据集;结合迁移学习和YOLOX获取每个标注框对应的正样本锚框;利用单目标检测数据集和双目标检测数据集以及改进的Focal‑CIoU Loss分别完成单目标网络模型和双目标网络的训练;利用网络模型识别图像数据中的气孔特征并反馈给用户。本发明能够提高植物叶表皮图像中的气孔识别的准确率,对植物气孔性状的研究具有重要意义,对智慧农业的发展起到积极的推动作用。
-
公开(公告)号:CN114913523A
公开(公告)日:2022-08-16
申请号:CN202210601781.4
申请日:2022-05-30
Applicant: 河南大学
Abstract: 本发明涉及智慧农业技术领域,具体涉及基于YOLOX的植物气孔多功能实时智能识别系统,该系统包括数据采集模块、迁移学习模块、标签分类模块、网络模型训练模块以及气孔识别模块。采集植物叶表皮图像,将叶表皮图像分为单目标检测数据集和双目标检测数据集;结合迁移学习和YOLOX获取每个标注框对应的正样本锚框;利用单目标检测数据集和双目标检测数据集以及改进的Focal‑CIoU Loss分别完成单目标网络模型和双目标网络的训练;利用网络模型识别图像数据中的气孔特征并反馈给用户。本发明能够提高植物叶表皮图像中的气孔识别的准确率,对植物气孔性状的研究具有重要意义,对智慧农业的发展起到积极的推动作用。
-