-
公开(公告)号:CN117952206B
公开(公告)日:2024-05-31
申请号:CN202410358013.X
申请日:2024-03-27
Applicant: 江南大学
Abstract: 本发明涉及知识图谱补全任务技术领域,具体指一种知识图谱链路预测方法,包括:利用预编码模型得到嵌入层向量,并构建对应掩码三元组;对掩码三元组中各元素加上对应位置编码,得到对应输入序列,并将其输入至训练好的主掩码模型中,输出对应实体分类概率;根据实体分类概率,预测潜在可能实体;还包括:将嵌入层向量对应语义信息与嵌入模型对应结构信息拼接,得到融合后的头实体与关系表达,并构建对应融合掩码三元组;对融合掩码三元组中各元素加上对应位置编码,得到对应融合输入序列;本发明使用预编码方法,有效减轻模型的训练压力,提高模型的推理速度;并在输入主掩码模型前使用融合模块,保证了文本描述信息的完整性,提高了预测精确度。
-
公开(公告)号:CN118820484B
公开(公告)日:2025-02-28
申请号:CN202410804900.5
申请日:2024-06-21
Applicant: 江南大学 , 苏州觉卿谛语智能科技有限公司
IPC: G06F16/36 , G06F18/214 , G06F18/2415
Abstract: 本发明涉及知识图谱补全任务技术领域,具体指一种基于大模型的知识图谱补全方法、设备及可读存储介质,包括:基于各个实体嵌入特征,构建各个实体的节点中心度函数、节点指示函数,确定所有实体的中心度数之和、节点指示函数值之和;基于各个待预测三元组的实体分布概率,构建各个待预测三元组的焦点损失函数,并结合所有实体的中心度数之和、节点指示函数值之和,构建各个待预测三元组的基于节点中心度的焦点平衡损失函数;根据预设的批次大小,构建当前批次的目标损失函数。本发明提高了大模型收敛速度、精度,提高了二阶段补全框架的推理速度、预测准确度,提高了知识图谱最终补全结果的准确率以及补全过程的处理效率。
-
公开(公告)号:CN117952206A
公开(公告)日:2024-04-30
申请号:CN202410358013.X
申请日:2024-03-27
Applicant: 江南大学
Abstract: 本发明涉及知识图谱补全任务技术领域,具体指一种知识图谱链路预测方法,包括:利用预编码模型得到嵌入层向量,并构建对应掩码三元组;对掩码三元组中各元素加上对应位置编码,得到对应输入序列,并将其输入至训练好的主掩码模型中,输出对应实体分类概率;根据实体分类概率,预测潜在可能实体;还包括:将嵌入层向量对应语义信息与嵌入模型对应结构信息拼接,得到融合后的头实体与关系表达,并构建对应融合掩码三元组;对融合掩码三元组中各元素加上对应位置编码,得到对应融合输入序列;本发明使用预编码方法,有效减轻模型的训练压力,提高模型的推理速度;并在输入主掩码模型前使用融合模块,保证了文本描述信息的完整性,提高了预测精确度。
-
公开(公告)号:CN118940763A
公开(公告)日:2024-11-12
申请号:CN202411377901.2
申请日:2024-09-30
IPC: G06F40/295 , G06F40/216 , G06F40/284 , G06F16/35 , G06F18/2415 , G06F18/2431 , G06N3/0455
Abstract: 本发明涉及自然语言处理技术领域,提供了一种基于大模型的掩码增强命名实体识别方法,该方法包括:采集待识别文本数据;预处理得到输入序列,输入训练好的识别模型得到识别结果;识别模型训练过程包括:基于设定掩码策略对训练输入序列进行掩码处理得到掩码输入序列,送入BERT模型得到实体、掩码上下文表示特征;执行命名实体识别任务和预测掩码任务且共享参数,得到实体预测值和掩码预测值;基于实体上下文表示特征和实体预测值计算第一损失函数,基于掩码预测值计算第二损失函数;更新模型参数;评估模型性能,重复训练直至性能达到设定要求。本发明能够充分理解语义,泛化能力较强,语境依赖性捕捉能力较强,误识别和漏识别情况较少。
-
公开(公告)号:CN118820484A
公开(公告)日:2024-10-22
申请号:CN202410804900.5
申请日:2024-06-21
Applicant: 江南大学 , 苏州觉卿谛语智能科技有限公司
IPC: G06F16/36 , G06F18/214 , G06F18/2415
Abstract: 本发明涉及知识图谱补全任务技术领域,具体指一种基于大模型的知识图谱补全方法、设备及可读存储介质,包括:基于各个实体嵌入特征,构建各个实体的节点中心度函数、节点指示函数,确定所有实体的中心度数之和、节点指示函数值之和;基于各个待预测三元组的实体分布概率,构建各个待预测三元组的焦点损失函数,并结合所有实体的中心度数之和、节点指示函数值之和,构建各个待预测三元组的基于节点中心度的焦点平衡损失函数;根据预设的批次大小,构建当前批次的目标损失函数。本发明提高了大模型收敛速度、精度,提高了二阶段补全框架的推理速度、预测准确度,提高了知识图谱最终补全结果的准确率以及补全过程的处理效率。
-
-
-
-