-
公开(公告)号:CN102831474A
公开(公告)日:2012-12-19
申请号:CN201210277058.1
申请日:2012-08-06
Applicant: 江南大学
IPC: G06N3/00
Abstract: 本发明涉及一种聚类方法,尤其是一种基于量子粒子群优化改进的模糊C-均值聚类方法,属于数据挖掘和人工智能的技术领域。本发明在传统的模糊C-均值聚类算法中,首先利用新距离标准取代Euclidean标准,以提高传统聚类算法下的模糊精确度,同时通过AFCM算法单次快速分类替代随机分配初始聚类中心,来降低聚类算法对初始聚类中心的敏感度,最后在聚类过程中引入基于距离改进的QPSO(AQPSO)并行优化思想使其聚类算法具有较强的全局搜索能力、更高的收敛精度,保证收敛速度也明显改善了聚类效果。
-
公开(公告)号:CN102831474B
公开(公告)日:2015-04-22
申请号:CN201210277058.1
申请日:2012-08-06
Applicant: 江南大学
Abstract: 本发明涉及一种聚类方法,尤其是一种基于量子粒子群优化改进的模糊C-均值聚类方法,属于数据挖掘和人工智能的技术领域。本发明在传统的模糊C-均值聚类算法中,首先利用新距离标准取代Euclidean标准,以提高传统聚类算法下的模糊精确度,同时通过AFCM算法单次快速分类替代随机分配初始聚类中心,来降低聚类算法对初始聚类中心的敏感度,最后在聚类过程中引入基于距离改进的QPSO(AQPSO)并行优化思想使其聚类算法具有较强的全局搜索能力、更高的收敛精度,保证收敛速度也明显改善了聚类效果。
-