-
公开(公告)号:CN110084292A
公开(公告)日:2019-08-02
申请号:CN201910314505.8
申请日:2019-04-18
Applicant: 江南大学
Abstract: 本发明提供基于DenseNet和多尺度特征融合的目标检测方法,其包括:S1构建特征提取网络模型;S2训练特征提取网络模型,通过多次迭代训练得到最优目标检测模型;S3将待检测图像数据输入到最优目标检测模型进行检测,在待检测图像上用矩形框标注每个物体的位置和类别;特征提取网络模型以DenseNet网络为基础网络,加深了网络层次,提高了特征质量,同时使用特征融合模块,引入上下文信息,得到六个用于最终预测的特征图,具有丰富的语义信息和较高的分辨率。本发明方法可在保证检测速度的基础上,降低模型规模,提升对小目标的检测精度。
-
公开(公告)号:CN110084292B
公开(公告)日:2023-06-06
申请号:CN201910314505.8
申请日:2019-04-18
Applicant: 江南大学
IPC: G06V10/80 , G06V10/774 , G06V10/82 , G06N3/0464
Abstract: 本发明提供基于DenseNet和多尺度特征融合的目标检测方法,其包括:S1构建特征提取网络模型;S2训练特征提取网络模型,通过多次迭代训练得到最优目标检测模型;S3将待检测图像数据输入到最优目标检测模型进行检测,在待检测图像上用矩形框标注每个物体的位置和类别;特征提取网络模型以DenseNet网络为基础网络,加深了网络层次,提高了特征质量,同时使用特征融合模块,引入上下文信息,得到六个用于最终预测的特征图,具有丰富的语义信息和较高的分辨率。本发明方法可在保证检测速度的基础上,降低模型规模,提升对小目标的检测精度。
-
-