基于高阶奇异值分解和模糊推理的多聚焦图像融合方法

    公开(公告)号:CN103985104B

    公开(公告)日:2017-01-25

    申请号:CN201410057924.5

    申请日:2014-02-20

    Applicant: 江南大学

    Abstract: 本发明公开了一种基于高阶奇异值分解和模糊推理的多聚焦图像融合方法。(1)对待融合的两幅多聚焦源图像分别进行滑动窗口分块,将分块后相互对应的源图像子块形成子张量;(2)对子张量进行高阶奇异值分解(HOSVD),采用基于模糊推理的加权平均融合规则对分解系数进行融合,通过提取分解系数的方差,区域能量,匹配度三个特征设计模糊推理规则;(3)对融合后系数进行HOSVD逆变换得到融合后图像子块;(4)将融合后的图像子块组合生成最终融合图像。本发明克服了传统多聚焦图像融合方法容易造成边缘失真的缺陷,很好地解决了图像融合中源图像对融合图像贡献程度的不确定性问题,使融合后图像质量得到明显提高。

    基于高阶奇异值分解和模糊推理的多聚焦图像融合方法

    公开(公告)号:CN103985104A

    公开(公告)日:2014-08-13

    申请号:CN201410057924.5

    申请日:2014-02-20

    Applicant: 江南大学

    Abstract: 本发明公开了一种基于高阶奇异值分解和模糊推理的多聚焦图像融合方法。(1)对待融合的两幅多聚焦源图像分别进行滑动窗口分块,将分块后相互对应的源图像子块形成子张量;(2)对子张量进行高阶奇异值分解(HOSVD),采用基于模糊推理的加权平均融合规则对分解系数进行融合,通过提取分解系数的方差,区域能量,匹配度三个特征设计模糊推理规则;(3)对融合后系数进行HOSVD逆变换得到融合后图像子块;(4)将融合后的图像子块组合生成最终融合图像。本发明克服了传统多聚焦图像融合方法容易造成边缘失真的缺陷,很好地解决了图像融合中源图像对融合图像贡献程度的不确定性问题,使融合后图像质量得到明显提高。

    基于平移不变剪切波变换的图像融合方法

    公开(公告)号:CN104268833B

    公开(公告)日:2018-06-22

    申请号:CN201410470345.3

    申请日:2014-09-15

    Applicant: 江南大学

    Abstract: 本发明公开了一种基于平移不变剪切波变换(SIST)的图像融合方法。其实现步骤为:首先通过SIST对源图像进行多尺度多方向分解,获得低频子带及高频子带系数。其次,低频子带反映了图像的轮廓信息,通过局部结构张量奇异值分解方法得到辨识图像清晰度的局部结构描述子,以此作为融合策略中的活动测度函数,采用取大的策略融合。高频子带体现了图像的细节信息,本发明提出了一种改进的边缘强度度量方式,并构造了一种基于sigmoid函数与边缘强度度量的多策略融合规则用于高频子带融合。最后,对得到的融合系数进行逆SIST变换得到最终融合图像。本发明克服了传统图像融合方法容易造成边缘失真的缺陷,融合图像保留了更多的边缘和细节信息。

    基于平移不变剪切波变换的图像融合新方法

    公开(公告)号:CN104268833A

    公开(公告)日:2015-01-07

    申请号:CN201410470345.3

    申请日:2014-09-15

    Applicant: 江南大学

    Abstract: 本发明公开了一种基于平移不变剪切波变换(SIST)的图像融合新方法。其实现步骤为:首先通过SIST对源图像进行多尺度多方向分解,获得低频子带及高频子带系数。其次,低频子带反映了图像的轮廓信息,通过局部结构张量奇异值分解方法得到辨识图像清晰度的局部结构描述子,以此作为融合策略中的活动测度函数,采用取大的策略融合。高频子带体现了图像的细节信息,本发明提出了一种新的边缘强度度量方式,并构造了一种基于sigmoid函数与边缘强度度量的多策略融合规则用于高频子带融合。最后,对得到的融合系数进行逆SIST变换得到最终融合图像。本发明克服了传统图像融合方法容易造成边缘失真的缺陷,融合图像保留了更多的边缘和细节信息。

Patent Agency Ranking