-
公开(公告)号:CN115601764A
公开(公告)日:2023-01-13
申请号:CN202211283747.3
申请日:2022-10-20
Applicant: 武汉理工大学(CN)
Abstract: 本发明公开了一种基于轻量级卷积神经网络的古籍汉字识别方法。通过集成多个专家模型,在训练过程中将预测概率分布差异项加入损失函数,降低在全体类别上的预测偏差和方差,从而提高在所有类别上的识别精度,同时引入模型轻量化技术降低了集成模型的计算开销和参数量,实现轻量级的古籍汉字长尾样本识别模型。本发明得到的模型在样本严重不均衡的古籍汉字数据集上能够有效提升在生僻字样本集上的识别精度,并与常规轻量级模型的计算复杂度和参数量相近。