基于级联模型和数据增强的法律命名实体识别方法及系统

    公开(公告)号:CN113609857B

    公开(公告)日:2023-11-28

    申请号:CN202110828255.7

    申请日:2021-07-22

    Abstract: 本发明公开了一种基于级联模型和数据增强的法律命名实体识别方法,包括以下步骤:对经过数据增强后的训练数据进行处理,构建带有上下文语义的字符级别的向量表示和带有上下文语义的词语级别的向量表示;S2、将两个向量表示进行融合;S3、使用BiLSTM双向长短记忆神经网络对融合字词特征的向量表示进行处理,提取文本的深层特征;S4、使用两个CRF条件随机场解码,得到实体序列和属性序列并拼接,得到最后的标签表示;S5、将最后的标签表示与验证集进行比较,调整模型参数信息,反复训练,得到最好的模型;S6、输入中文法律文书案列,模型自动进行判断并输出法律文书中的法律实体。

    基于级联模型和数据增强的法律命名实体识别方法及系统

    公开(公告)号:CN113609857A

    公开(公告)日:2021-11-05

    申请号:CN202110828255.7

    申请日:2021-07-22

    Abstract: 本发明公开了一种基于级联模型和数据增强的法律命名实体识别方法,包括以下步骤:对经过数据增强后的训练数据进行处理,构建带有上下文语义的字符级别的向量表示和带有上下文语义的词语级别的向量表示;S2、将两个向量表示进行融合;S3、使用BiLSTM双向长短记忆神经网络对融合字词特征的向量表示进行处理,提取文本的深层特征;S4、使用两个CRF条件随机场解码,得到实体序列和属性序列并拼接,得到最后的标签表示;S5、将最后的标签表示与验证集进行比较,调整模型参数信息,反复训练,得到最好的模型;S6、输入中文法律文书案列,模型自动进行判断并输出法律文书中的法律实体。

Patent Agency Ranking