-
公开(公告)号:CN119180997A
公开(公告)日:2024-12-24
申请号:CN202311519338.3
申请日:2023-11-13
Applicant: 武汉工程大学
IPC: G06V10/774 , G06V10/40 , G06V10/80 , G06V20/13 , G06V20/40
Abstract: 本申请提供一种目标检测模型训练方法、装置、电子设备及存储介质,涉及计算机处理技术领域。方法包括:获取用于模型训练的数据集,将数据集输入待训练的初始检测模型中的特征提取网络,以对样本图像进行多尺度特征提取和注意力特征提取,得到每个样本图像对应的多个多尺度特征图;将各个多尺度特征图输入初始检测模型中的检测头,得到样本图像对应的检测结果,然后获取检测结果中每个待检测目标和每个待检测目标对应的真实目标之间的损失值,判断损失值是否满足预设模型收敛条件,若满足,则将满足预设模型收敛条件的初始检测模型作为目标检测模型。如此,可以改善传统目标识别类模型对视频卫星图像中的小目标检测精度低、效果差的问题。
-
公开(公告)号:CN119672085A
公开(公告)日:2025-03-21
申请号:CN202411734017.X
申请日:2024-11-29
Applicant: 武汉工程大学
IPC: G06T7/593 , G06T7/40 , G06T3/4053 , G06T5/70
Abstract: 本发明提供一种视差指导的双目超分辨率图像重建方法与系统,涉及计算机视觉双目超分辨率技术领域;方法包括:通过构建的视差指导双目超分辨率模型对输入的双目低分辨率图像进行去伪影处理,得到双目去伪影图像,对双目去伪影图像进行迭代去噪处理,得到双目超分辨率重建图像,并估计出双目超分辨率重建图像的双目估计视差,分别计算双目估计视差和双目超分辨率重建图像对应的损失值,根据不同的损失值对模型优化,以使用优化后的模型将目标双目低分辨率图像重建为目标双目超分辨率重建图像。通过视差损失和路径损失来约束模型,提高模型重建精度,以重建出高保真和聚集高频信息的双目高分辨率图像。
-