一种基于3D骨架的多视角室内人体行为识别方法

    公开(公告)号:CN105631420A

    公开(公告)日:2016-06-01

    申请号:CN201510995238.7

    申请日:2015-12-23

    CPC classification number: G06K9/00342 G06K9/6269

    Abstract: 本发明公开了一种基于3D骨架的多视角室内人体行为识别方法,包括以下步骤:1)获取人体运动在正视角、斜视角和侧视角三个角度的视频;所述视频包括训练视频和测试视频;2)通过体感设备提取视频中人体骨架3D特征;所述三维骨架特征包括全局运动特征和手臂、腿部局部运动特征;3)训练模型;通过训练视频中的人体骨架3D特征进行特征描述,得到训练特征集;具体如下:对三维骨架特征进行在线字典学习;然后稀疏主成分分析进行降维,形成特征集数据集;4)输入测试视频的样本的特征集,通过线性支持向量机(LSVM)进行识别。本发明方法实现了多角度动作的分类识别,克服了单视角识别算法的局限性,更具有研究价值和实际应用价值。

    一种基于卷积神经网络的汉字识别方法

    公开(公告)号:CN106650748A

    公开(公告)日:2017-05-10

    申请号:CN201611009032.3

    申请日:2016-11-16

    CPC classification number: G06K9/4609 G06K9/6256 G06N3/0454

    Abstract: 本发明公开了一种基于卷积神经网络的汉字识别方法,该方法包括以下步骤:1)采集训练用的文本图像;2)图像预处理:首先对图像进行非均匀光照调整,然后将图像转换为灰度图像;3)对预处理的图像进行特征提取;4)通过训练获得最终识别模型,选取测试识别正确率最高的卷积神经网络模型,作为最终识别模型;5)文字识别:对待识别的文本图像进行如步骤2)的图像预处理,采用训练所得的卷积神经网络模型进行识别,输出类别,匹配标签中汉字类别,输出汉字识别结果。本发明将提取方向特征图作为先验知识,和原始图像一起作为输入层的数据输入,以增强神经网络的识别性能,提高了汉字的识别率;且最终模型较小,计算速度快。

Patent Agency Ranking