一种基于并联混合卷积网络的高分辨率遥感影像分类方法

    公开(公告)号:CN114092832A

    公开(公告)日:2022-02-25

    申请号:CN202210065211.8

    申请日:2022-01-20

    Applicant: 武汉大学

    Abstract: 本发明公开了一种基于并联混合卷积网络的高分辨率遥感影像分类方法,具体步骤为:输入高分辨率遥感影像和相应的样本标签数据,包括训练样本数据集、测试样本数据集;并联搭建三维卷积神经网络和二维卷积神经网络,构建信息融合转换网络实现空谱特征信息融合以及深层次提取;批量输入训练样本数据集训练网络,构造交叉熵损失函数和随机梯度下降算法优化网络并更新参数,直至网络收敛;输入测试样本数据集到混合网络模型中,输出测试样本标签预测值,完成高分影像分类。本发明可同时提取高分遥感影像的空间特征和光谱特征,进行特征融合实现影像高效率高精度分类,在自然资源监测、地理国情普查、城市规划、气候变化等研究中提供重要作用。

    结合矩阵补全和趋势滤波的植被指数时间序列重建方法

    公开(公告)号:CN114463202B

    公开(公告)日:2024-11-08

    申请号:CN202210037286.5

    申请日:2022-01-13

    Applicant: 武汉大学

    Abstract: 本发明提供了一种结合矩阵补全和趋势滤波的植被指数时间序列重建方法,包括如下步骤:首先通过植被指数产品中的质量标记数据确定时间序列数据中的缺失位置,然后针对单个像素的植被指数序列,通过矩阵变化从一维向量变成二维矩阵,接着针对每个像素变换后的矩阵,建立低秩矩阵补全的最优化能量方程,通过非精确增广拉格朗日算法实现矩阵补全,得到初步不含数据缺失的时间序列补全矩阵。最后再将该补全矩阵进行向量化,在一维向量的基础上建立加权趋势滤波的能量优化方程,通过交替方向乘子法实现模型的求解,从而进一步滤除残留的噪声,得到平滑干净的高质量植被指数时间序列数据,实现长时间遥感植被指数序列的高精度重建。

    结合矩阵补全和趋势滤波的植被指数时间序列重建方法

    公开(公告)号:CN114463202A

    公开(公告)日:2022-05-10

    申请号:CN202210037286.5

    申请日:2022-01-13

    Applicant: 武汉大学

    Abstract: 本发明提供了一种结合矩阵补全和趋势滤波的植被指数时间序列重建方法,包括如下步骤:首先通过植被指数产品中的质量标记数据确定时间序列数据中的缺失位置,然后针对单个像素的植被指数序列,通过矩阵变化从一维向量变成二维矩阵,接着针对每个像素变换后的矩阵,建立低秩矩阵补全的最优化能量方程,通过非精确增广拉格朗日算法实现矩阵补全,得到初步不含数据缺失的时间序列补全矩阵。最后再将该补全矩阵进行向量化,在一维向量的基础上建立加权趋势滤波的能量优化方程,通过交替方向乘子法实现模型的求解,从而进一步滤除残留的噪声,得到平滑干净的高质量植被指数时间序列数据,实现长时间遥感植被指数序列的高精度重建。

    一种基于并联混合卷积网络的高分辨率遥感影像分类方法

    公开(公告)号:CN114092832B

    公开(公告)日:2022-04-15

    申请号:CN202210065211.8

    申请日:2022-01-20

    Applicant: 武汉大学

    Abstract: 本发明公开了一种基于并联混合卷积网络的高分辨率遥感影像分类方法,具体步骤为:输入高分辨率遥感影像和相应的样本标签数据,包括训练样本数据集、测试样本数据集;并联搭建三维卷积神经网络和二维卷积神经网络,构建信息融合转换网络实现空谱特征信息融合以及深层次提取;批量输入训练样本数据集训练网络,构造交叉熵损失函数和随机梯度下降算法优化网络并更新参数,直至网络收敛;输入测试样本数据集到混合网络模型中,输出测试样本标签预测值,完成高分影像分类。本发明可同时提取高分遥感影像的空间特征和光谱特征,进行特征融合实现影像高效率高精度分类,在自然资源监测、地理国情普查、城市规划、气候变化等研究中提供重要作用。

Patent Agency Ranking