一种提供完整性验证的可审计外包机器学习服务方法

    公开(公告)号:CN112488227A

    公开(公告)日:2021-03-12

    申请号:CN202011439129.4

    申请日:2020-12-07

    Applicant: 武汉大学

    Abstract: 本发明通过一种提供完整性验证的可审计外包机器学习服务方法,设置外包机器学习服务审计过程和承诺‑证明协议,所述外包机器学习服务审计过程用于实现机器学习模型训练过程的完整性保证,检测错误行为,实现过程包括计算阶段,服务端保存额外的辅助信息;验证阶段,服务器根据指定的机器学习算法和参数训练预测模型,训练后客户端随机抽取部分迭代子集作为挑战,服务端生成相应的证明,如果所有证明都能通过验证算法,客户端认为服务器已正确执行学习任务,进行支付阶段;所述承诺‑证明协议,用于在高效训练机器学习模型时,通过采样证明大量循环迭代来避免验证全部计算。

    一种提供完整性验证的可审计外包机器学习服务方法

    公开(公告)号:CN112488227B

    公开(公告)日:2023-03-24

    申请号:CN202011439129.4

    申请日:2020-12-07

    Applicant: 武汉大学

    Abstract: 本发明通过一种提供完整性验证的可审计外包机器学习服务方法,设置外包机器学习服务审计过程和承诺‑证明协议,所述外包机器学习服务审计过程用于实现机器学习模型训练过程的完整性保证,检测错误行为,实现过程包括计算阶段,服务端保存额外的辅助信息;验证阶段,服务器根据指定的机器学习算法和参数训练预测模型,训练后客户端随机抽取部分迭代子集作为挑战,服务端生成相应的证明,如果所有证明都能通过验证算法,客户端认为服务器已正确执行学习任务,进行支付阶段;所述承诺‑证明协议,用于在高效训练机器学习模型时,通过采样证明大量循环迭代来避免验证全部计算。

Patent Agency Ranking