-
公开(公告)号:CN109145902A
公开(公告)日:2019-01-04
申请号:CN201810955658.6
申请日:2018-08-21
Applicant: 武汉大学
CPC classification number: G06K9/3216 , G06K9/4671 , G06K2009/3225 , G06N3/0454 , G06N3/08
Abstract: 本发明属于摄影测量与计算机视觉技术领域,公开了一种利用泛化特征对几何标识进行识别及定位的方法,利用三维渲染引擎对相应类别的几何图形对象生成训练数据集,通过深度学习网络对该图形进行训练,实现对几何标识在影像中的识别;对识别出的图形目标进行轮廓提取等共性特征处理,再利用降维的ICP算法实现标识离散化状态下的配准,获得其变换参数,从而获得几何标识的精确定位。本发明实现了对几何标识基元在影像中的形变的定量描述,取得了较为满意的定位精度;可以实现对于常用的几何标识,无需定制特定的算法,而是直接通过上述流程,实现对该标识准确的定位,从而简化人工标识的提取与定位流程,形成一种通用的方式。
-
公开(公告)号:CN109145902B
公开(公告)日:2021-09-03
申请号:CN201810955658.6
申请日:2018-08-21
Applicant: 武汉大学
Abstract: 本发明属于摄影测量与计算机视觉技术领域,公开了一种利用泛化特征对几何标识进行识别及定位的方法,利用三维渲染引擎对相应类别的几何图形对象生成训练数据集,通过深度学习网络对该图形进行训练,实现对几何标识在影像中的识别;对识别出的图形目标进行轮廓提取等共性特征处理,再利用降维的ICP算法实现标识离散化状态下的配准,获得其变换参数,从而获得几何标识的精确定位。本发明实现了对几何标识基元在影像中的形变的定量描述,取得了较为满意的定位精度;可以实现对于常用的几何标识,无需定制特定的算法,而是直接通过上述流程,实现对该标识准确的定位,从而简化人工标识的提取与定位流程,形成一种通用的方式。
-