-
公开(公告)号:CN109919083B
公开(公告)日:2020-11-17
申请号:CN201910165983.7
申请日:2019-03-06
Applicant: 武汉大学
Abstract: 本发明涉及一种利用Sentinel‑2影像数据的早期自动化冬小麦制图方法,该方法包括获取研究区冬小麦早期时相Sentinel‑2影像数据;对数据进行大气校正、云掩膜处理;计算生成NDVI植被指数;结合冬小麦物候先验知识,生成多个冬小麦为靶向的物候特征;利用生成的物候特征建立冬小麦分类规则;利用分类规则获取研究区冬小麦分布结果以及相应的面积监测信息。本发明利用冬小麦物候特性构建以冬小麦为靶向的物候特征,可以实现不依赖于地面数据的冬小麦高精度识别,并且能够在冬小麦收获5个月之前得到空间分辨率10米的精细化冬小麦制图结果。
-
公开(公告)号:CN109919083A
公开(公告)日:2019-06-21
申请号:CN201910165983.7
申请日:2019-03-06
Applicant: 武汉大学
Abstract: 本发明涉及一种利用Sentinel-2影像数据的早期自动化冬小麦制图方法,该方法包括获取研究区冬小麦早期时相Sentinel-2影像数据;对数据进行大气校正、云掩膜处理;计算生成NDVI植被指数;结合冬小麦物候先验知识,生成多个冬小麦为靶向的物候特征;利用生成的物候特征建立冬小麦分类规则;利用分类规则获取研究区冬小麦分布结果以及相应的面积监测信息。本发明利用冬小麦物候特性构建以冬小麦为靶向的物候特征,可以实现不依赖于地面数据的冬小麦高精度识别,并且能够在冬小麦收获5个月之前得到空间分辨率10米的精细化冬小麦制图结果。
-