基于掩膜区域卷积神经网络的变电设备缺陷识别的方法

    公开(公告)号:CN112288694B

    公开(公告)日:2022-10-04

    申请号:CN202011118132.6

    申请日:2020-10-19

    Applicant: 武汉大学

    Abstract: 本发明提出了一种基于掩膜区域卷积神经网的变电设备缺陷识别的方法。本发明通过变电站视频设备采集变电设备图像,将采集的变电设备图像通过对抗生成网络方法得到变电设备图像数据集;对变电设备图像数据集中每幅变电设备图像依次进行人工标定,得到每幅变电设备图像中多个缺陷标定框以及多个缺陷类型,并得到人工标定后变电设备图像数据集;构建掩膜区域卷积神经网络,将人工标定后变电设备图像数据集作为训练集,对掩膜区域卷积神经网络进行训练得到训练后掩膜区域卷积神经网络。本发明提高了变电设备的运维巡检效率以及变电设备及其缺陷识别的模型精度,且本发明方法识别精度高、缺陷识别效率高。

    一种基于掩膜区域卷积神经网的变电设备缺陷识别的方法

    公开(公告)号:CN112288694A

    公开(公告)日:2021-01-29

    申请号:CN202011118132.6

    申请日:2020-10-19

    Applicant: 武汉大学

    Abstract: 本发明提出了一种基于掩膜区域卷积神经网的变电设备缺陷识别的方法。本发明通过变电站视频设备采集变电设备图像,将采集的变电设备图像通过对抗生成网络方法得到变电设备图像数据集;对变电设备图像数据集中每幅变电设备图像依次进行人工标定,得到每幅变电设备图像中多个缺陷标定框以及多个缺陷类型,并得到人工标定后变电设备图像数据集;构建掩膜区域卷积神经网络,将人工标定后变电设备图像数据集作为训练集,对掩膜区域卷积神经网络进行训练得到训练后掩膜区域卷积神经网络。本发明提高了变电设备的运维巡检效率以及变电设备及其缺陷识别的模型精度,且本发明方法识别精度高、缺陷识别效率高。

Patent Agency Ranking