-
公开(公告)号:CN114409286B
公开(公告)日:2023-03-24
申请号:CN202111613534.8
申请日:2021-12-27
Applicant: 武汉大学
IPC: C04B12/00
Abstract: 本发明涉及无机非金属材料的技术领域,具体涉及一种超疏水磷酸基地质聚合物的制备方法,包括以下步骤:制备硅铝比为1.25‑2.0的地质聚合物前体;将模板剂、正硅酸乙酯和疏水剂按照一定比例混合均匀;依次将分散剂、表面活性剂溶于水中再加入地质聚合物前体,拌合成混合浆体;将“油”相与“水”相按照一定体积比混合,再加入磷酸或磷酸二氢盐,球磨后在一定条件下进行养护;将养护完成的地聚物块体干燥后在一定温度下煅烧除去有机物,得到具有定向孔结构的超疏水磷酸基地质聚合物。本发明制备的地质聚合物仅在模板剂所产生的孔具有粗糙微结构,进一步提高了表面的疏水性能。
-
公开(公告)号:CN114409286A
公开(公告)日:2022-04-29
申请号:CN202111613534.8
申请日:2021-12-27
Applicant: 武汉大学
IPC: C04B12/00
Abstract: 本发明涉及无机非金属材料的技术领域,具体涉及一种超疏水磷酸基地质聚合物的制备方法,包括以下步骤:制备硅铝比为1.25‑2.0的地质聚合物前体;将模板剂、正硅酸乙酯和疏水剂按照一定比例混合均匀;依次将分散剂、表面活性剂溶于水中再加入地质聚合物前体,拌合成混合浆体;将“油”相与“水”相按照一定体积比混合,再加入磷酸或磷酸二氢盐,球磨后在一定条件下进行养护;将养护完成的地聚物块体干燥后在一定温度下煅烧除去有机物,得到具有定向孔结构的超疏水磷酸基地质聚合物。本发明制备的地质聚合物仅在模板剂所产生的孔具有粗糙微结构,进一步提高了表面的疏水性能。
-
公开(公告)号:CN116082005B
公开(公告)日:2025-03-18
申请号:CN202310099387.X
申请日:2023-01-31
Applicant: 武汉大学
IPC: C04B28/06 , B28C5/00 , B28C5/08 , B28B13/02 , B28B13/06 , B28B11/24 , C04B111/27 , C04B111/20
Abstract: 本发明涉及一种速凝、低成本、坚固的整体疏水水泥砂浆及其制备方法,上述制备方法包括:1)将月桂酸溶于无水乙醇中,搅拌均匀,得到月桂酸乙醇溶液;2)向月桂酸乙醇溶液中加入去离子水,在60~65℃下搅拌3~5min,随后再在温度40~55℃环境中超声波分散30~45min,得低表面能溶液;3)将低表面能溶液倒入装有标准砂的小型搅拌器中,搅拌一段时间后加入高贝利特硫酸铝酸盐水泥,再先低速搅拌180~210s,再高速搅拌120~150s,得到改性水泥砂浆,倒入模具,振动去除气泡;4)将步骤3)所得样品脱模后养护、干燥,形成超疏水性水泥砂浆块。本发明提供的水泥砂浆块具有良好的自清洁效果与机械耐久性。
-
公开(公告)号:CN115286301B
公开(公告)日:2023-05-05
申请号:CN202210902195.3
申请日:2022-07-29
Applicant: 武汉大学
IPC: C04B28/00 , C04B7/24 , C04B16/06 , C04B18/24 , C04B111/34
Abstract: 本发明提供一种多尺度纤维增强碱激发胶凝材料的制备方法,包括以下步骤:首先、将滤纸纤维溶解,获得纳米纤维溶液;其次、加入氢氧化钠,获得纳米纤维碱激发溶液;再次、将胶凝材料前体粉末与细砂的混合物加入纳米纤维碱激发溶液中;最后、加入微米纤维,并混匀,装模振捣,经养护获得多尺度纤维增强碱激发胶凝材料。该胶凝材料内部含有自组装性能的纳米纤维编织网络,并与微米纤维形成独特的“狼牙棒”多尺度结构。两种不同尺度纤维相互作用,提高微观结构致密性,增强基体抗裂能力。纳米纤维表面的亲水基团改善微米纤维与碱激发胶凝材料基体间的界面结合,提高碱激发胶凝材料的力学性能,制得的胶凝材料具有高抗折、高抗收缩等优势。
-
公开(公告)号:CN116082005A
公开(公告)日:2023-05-09
申请号:CN202310099387.X
申请日:2023-01-31
Applicant: 武汉大学
IPC: C04B28/06 , B28C5/00 , B28C5/08 , B28B13/02 , B28B13/06 , B28B11/24 , C04B111/27 , C04B111/20
Abstract: 本发明涉及一种速凝、低成本、坚固的整体疏水水泥砂浆及其制备方法,上述制备方法包括:1)将月桂酸溶于无水乙醇中,搅拌均匀,得到月桂酸乙醇溶液;2)向月桂酸乙醇溶液中加入去离子水,在60~65℃下搅拌3~5min,随后再在温度40~55℃环境中超声波分散30~45min,得低表面能溶液;3)将低表面能溶液倒入装有标准砂的小型搅拌器中,搅拌一段时间后加入高贝利特硫酸铝酸盐水泥,再先低速搅拌180~210s,再高速搅拌120~150s,得到改性水泥砂浆,倒入模具,振动去除气泡;4)将步骤3)所得样品脱模后养护、干燥,形成超疏水性水泥砂浆块。本发明提供的水泥砂浆块具有良好的自清洁效果与机械耐久性。
-
公开(公告)号:CN115286301A
公开(公告)日:2022-11-04
申请号:CN202210902195.3
申请日:2022-07-29
Applicant: 武汉大学
IPC: C04B28/00 , C04B7/24 , C04B16/06 , C04B18/24 , C04B111/34
Abstract: 本发明提供一种多尺度纤维增强碱激发胶凝材料的制备方法,包括以下步骤:首先、将滤纸纤维溶解,获得纳米纤维溶液;其次、加入氢氧化钠,获得纳米纤维碱激发溶液;再次、将胶凝材料前体粉末与细砂的混合物加入纳米纤维碱激发溶液中;最后、加入微米纤维,并混匀,装模振捣,经养护获得多尺度纤维增强碱激发胶凝材料。该胶凝材料内部含有自组装性能的纳米纤维编织网络,并与微米纤维形成独特的“狼牙棒”多尺度结构。两种不同尺度纤维相互作用,提高微观结构致密性,增强基体抗裂能力。纳米纤维表面的亲水基团改善微米纤维与碱激发胶凝材料基体间的界面结合,提高碱激发胶凝材料的力学性能,制得的胶凝材料具有高抗折、高抗收缩等优势。
-
公开(公告)号:CN112084647B
公开(公告)日:2022-04-01
申请号:CN202010917113.3
申请日:2020-09-03
Applicant: 武汉大学
IPC: G06F30/20 , G06F30/25 , G06F17/16 , G06F17/11 , G06F119/14
Abstract: 本发明公开了一种大规模颗粒材料内部应力及破碎模拟分析方法和装置,属于颗粒破碎技术领域,本发明基于连续离散耦合基本思想,将边界元法和离散元法相结合进行大规模颗粒破碎研究,能够利用边界元法进行颗粒内部应力计算分析,并结合连续介质力学断裂理论,霍克布朗准则判断颗粒是否发生破碎。此外,在利用边界元进行内部应力模拟时,对于形状相似的颗粒集合体,例如:圆形颗粒,本发明只需计算一个颗粒的系数矩阵,其他相似颗粒通过坐标转换和系数缩放获得系数矩阵,大大提高了计算效率。本发明还进行了圆形堆石料的内部应力模拟,并证明其有效性。
-
公开(公告)号:CN112084647A
公开(公告)日:2020-12-15
申请号:CN202010917113.3
申请日:2020-09-03
Applicant: 武汉大学
IPC: G06F30/20 , G06F30/25 , G06F17/16 , G06F17/11 , G06F119/14
Abstract: 本发明公开了一种大规模颗粒材料内部应力及破碎模拟分析方法和装置,属于颗粒破碎技术领域,本发明基于连续离散耦合基本思想,将边界元法和离散元法相结合进行大规模颗粒破碎研究,能够利用边界元法进行颗粒内部应力计算分析,并结合连续介质力学断裂理论,霍克布朗准则判断颗粒是否发生破碎。此外,在利用边界元进行内部应力模拟时,对于形状相似的颗粒集合体,例如:圆形颗粒,本发明只需计算一个颗粒的系数矩阵,其他相似颗粒通过坐标转换和系数缩放获得系数矩阵,大大提高了计算效率。本发明还进行了圆形堆石料的内部应力模拟,并证明其有效性。
-
-
-
-
-
-
-