一种适用于非平稳噪声环境下的在线语音增强方法

    公开(公告)号:CN106340304A

    公开(公告)日:2017-01-18

    申请号:CN201610843483.0

    申请日:2016-09-23

    Abstract: 本发明公开了一种适用于非平稳噪声环境下的在线语音增强方法,包括步骤:1)建立非平稳噪声环境下的系统模型;2)分帧和加窗;3)系统初始化;4)估计AR参数;5)估计语音信号状态序列。本发明针对语音模型中AR参数不能随噪声变化实时更新的问题,提出了双卡尔曼滤波框架,两个卡尔曼滤波器并行运算,语音信号状态估计和AR参数估计互相更新,状态估计过程和参数估计过程交替进行,使得参数估计过程能够适应噪声变化过程,以提高系统模型的准确性,进而提高语音增强的性能。本发明针对传统卡尔曼滤波算法无法处理非平稳噪声的问题,结合凸优化技术,提出了改进型卡尔曼滤波框架,能够对高斯噪声和非平稳噪声进行准确估计,提高了语音增强的准确性。

    一种适用于非平稳噪声环境下的在线语音增强方法

    公开(公告)号:CN106340304B

    公开(公告)日:2019-09-06

    申请号:CN201610843483.0

    申请日:2016-09-23

    Abstract: 本发明公开了一种适用于非平稳噪声环境下的在线语音增强方法,包括步骤:1)建立非平稳噪声环境下的系统模型;2)分帧和加窗;3)系统初始化;4)估计AR参数;5)估计语音信号状态序列。本发明针对语音模型中AR参数不能随噪声变化实时更新的问题,提出了双卡尔曼滤波框架,两个卡尔曼滤波器并行运算,语音信号状态估计和AR参数估计互相更新,状态估计过程和参数估计过程交替进行,使得参数估计过程能够适应噪声变化过程,以提高系统模型的准确性,进而提高语音增强的性能。本发明针对传统卡尔曼滤波算法无法处理非平稳噪声的问题,结合凸优化技术,提出了改进型卡尔曼滤波框架,能够对高斯噪声和非平稳噪声进行准确估计,提高了语音增强的准确性。

Patent Agency Ranking