-
公开(公告)号:CN111507243A
公开(公告)日:2020-08-07
申请号:CN202010293342.2
申请日:2020-04-15
Applicant: 桂林电子科技大学 , 桂林安维科技有限公司
Abstract: 本发明公开了一种基于格拉斯曼流形分析的人体行为识别方法,包括获取数据集的所有训练样本映射到格拉斯曼流形空间;对类内样本点距离和类间样本点距离进行建模;重新定义数据集上的训练样本;建立组合学习模型;对组合学习模型进行迭代求解。以多种特征建模设计分类器模型。从已标注和未标注的行为视频中,基于自定义图模型,通过标签传播方法生成未标注视频的虚拟标签,并使用多流形分析揭示特征数据相关性。对于每种类型特征,既单独保留近邻数据点的局部结构一致性,又在训练集中使用多种特征数据点的全局一致性,来预测未标注样本的标签数据,在标注数据不足时,训练出一种人体行为视频的多分类器,从而提高人体行为识别的准确度。
-
公开(公告)号:CN111507243B
公开(公告)日:2022-08-19
申请号:CN202010293342.2
申请日:2020-04-15
Applicant: 桂林电子科技大学 , 桂林安维科技有限公司
IPC: G06V40/10 , G06V10/764 , G06K9/62
Abstract: 本发明公开了一种基于格拉斯曼流形分析的人体行为识别方法,包括获取数据集的所有训练样本映射到格拉斯曼流形空间;对类内样本点距离和类间样本点距离进行建模;重新定义数据集上的训练样本;建立组合学习模型;对组合学习模型进行迭代求解。以多种特征建模设计分类器模型。从已标注和未标注的行为视频中,基于自定义图模型,通过标签传播方法生成未标注视频的虚拟标签,并使用多流形分析揭示特征数据相关性。对于每种类型特征,既单独保留近邻数据点的局部结构一致性,又在训练集中使用多种特征数据点的全局一致性,来预测未标注样本的标签数据,在标注数据不足时,训练出一种人体行为视频的多分类器,从而提高人体行为识别的准确度。
-
公开(公告)号:CN111488840A
公开(公告)日:2020-08-04
申请号:CN202010293489.1
申请日:2020-04-15
Applicant: 桂林电子科技大学 , 桂林安维科技有限公司
Abstract: 本发明公开了一种基于多任务学习模型的人体行为分类方法,包括划分有标签数据和无标签数据;基于类内相似图模型和类间相似图模型建立多流形和标签一致性模型;基于图嵌入方法对多流形和分类器训练建立多任务学习模型;提取训练集特征并对特征进行降维;获取特征输入至多任务学习模型进行训练得到分类器结果。通过对视频中人物动作的数据分布和特征关联进行分析,结合多流形分析和多任务学习重新定义目标函数,挖掘出行为特征之间的内在联系;利用谱投影梯度方法和KKT条件求解多分类器目标函数的最优值;运用半监督学习算法,将已标注视频和未标注视频样本作为训练样本,同时放入分类器训练过程以提高分类器性能,从而提高了识别精度。
-
-