-
公开(公告)号:CN119323246A
公开(公告)日:2025-01-17
申请号:CN202411459550.X
申请日:2024-10-18
Applicant: 桂林电子科技大学 , 南宁桂电电子科技研究院有限公司
IPC: G06N3/094 , G06N5/045 , G06F18/20 , G06F18/15 , G06F18/213 , G06N3/0464 , G06N3/044 , G06F123/02
Abstract: 本发明涉及人工智能安全和时间序列对抗攻击领域,具体是一种小扰动的时间序列预测对抗攻击方案。该方案通过融合多种神经网络可解释性方法,从网络模型输入的时间序列特征出发,选择多解释下综合评价高的特征部位进行攻击,通过对序列部分攻击降低扰动的成本,解决时间序列数据对异常扰动敏感的问题。对于不同的时间序列预测模型,通用、稳定、可靠的事后解释方法是关键,将不同事后解释性方法综合,得到多维度的特征重要度解释体系来衡量特征点的价值,以此确保在小规模的扰动下攻击仍然有效。此外,通过这种方式的对抗性攻击在不同的时间序列数据与时间序列预测具有良好的可迁移性。