-
公开(公告)号:CN115082678A
公开(公告)日:2022-09-20
申请号:CN202210705586.6
申请日:2022-06-21
Applicant: 桂林电子科技大学
Abstract: 本发明公开一种基于深度学习的图像分割方法,首先,构建语义分割模型;该语义分割模型由骨干网络、XY网络和全卷积解码网络组成;骨干网络的输入形成语义分割模型的输入,骨干网络的输出连接XY网络的输入,XY网络的输出连接全卷积解码网络的输入,全卷积解码网络的输出语义分割模型的输出;然后,利用已分割好的样本图像集对步骤1所构建的语义分割模型进行训练,得到训练好的语义分割模型;最后,将待分割的图像送入到步骤2所得到的训练好的语义分割模型中,训练好的语义分割模型输出分割好的图片。本发明的XYNet在鲁棒性,评价指标,推理速度,模型大小,推理浮点计算数以及图像的可视化结果上都取得了不错的效果,相对于现有的网络均衡性更强。