-
公开(公告)号:CN108052683B
公开(公告)日:2021-08-03
申请号:CN201810058745.1
申请日:2018-01-22
Applicant: 桂林电子科技大学
Abstract: 本发明公开一种基于余弦度量规则的知识图谱表示学习方法,首先将知识图谱中的实体与关系随机嵌入到两个向量空间;其次利用候选实体统计规则,统计相关关系对应的三元组集与候选实体向量集;再次利用余弦相似度构造目标向量与候选实体的评分函数,对候选实体进行评价;最后利用损失函数将所有相关关系的候选实体向量与目标向量进行统一训练,并通过随机梯度下降算法最小化损失函数。当达到优化目标时,即可获得知识图谱中每个实体向量和关系向量的最佳表示,从而更好的表示实体与关系之间的联系,并能够很好的应用于大规模的知识图谱补全当中。
-
公开(公告)号:CN107590139B
公开(公告)日:2020-10-27
申请号:CN201710856687.2
申请日:2017-09-21
Applicant: 桂林电子科技大学
Abstract: 本发明公开一种基于循环矩阵翻译的知识图谱表示学习方法,首先利用随机生成方法对错误三元组进行生成,并将所有实体与关系分别嵌入不同空间;其次利用循环矩阵生成规则,生成循环矩阵对实体进行投影;再次通过评分函数对三元组的嵌入进行评价;最后利用两种不同损失函数将实体和关系关联起来,并使用SGD算法最小化损失函数,当达到优化目标时,即可获得知识图谱中每个实体向量和关系向量的最佳表示,从而更好的表示实体与关系之间的联系,并能够很好的应用于大规模的知识图谱补全当中。本发明具有较强可行性和良好的实用性。
-
公开(公告)号:CN109376249B
公开(公告)日:2021-11-30
申请号:CN201811042565.0
申请日:2018-09-07
Applicant: 桂林电子科技大学
IPC: G06F16/36 , G06F40/289
Abstract: 本发明提出一种基于自适应负采样的知识图谱嵌入方法,包括以下步骤:步骤1、根据实体间的相似性对实体向量进行分组;步骤2、利用同一分组内的相似实体进行相互替换并生成与正例三元组相似的负例三元组;步骤3、将所述正例三元组与所述负例三元组作为知识图谱嵌入模型中的训练输入;步骤4、利用所述知识图谱嵌入模型的损失函数优化更新实体向量与关系向量。本发明提高了替换实体与被替换实体之间的相似度,从而提高负例三元组质量;根据实体在知识图谱中出现的频率对实体进行采用,提高了高频实体被训练的次数;通过提高负例三元组的质量,有效的实现了知识图谱中实体与关系的嵌入。
-
公开(公告)号:CN109165278B
公开(公告)日:2021-11-09
申请号:CN201811042564.6
申请日:2018-09-07
Applicant: 桂林电子科技大学
Abstract: 本发明提出一种基于实体和关系结构信息的知识图谱表示学习方法,包括以下步骤:获取知识图谱中实体的结构语义信息与关系的结构语义信息;根据所述实体的结构语义信息与关系的结构语义信息,构建实体目标向量与目标关系向量;根据所述实体目标向量与目标关系向量,构建得分函数;根据所述得分函数构建损失函数,通过最小化所述损失函数,学习实体与关系的最佳向量表示。本发明充分地利用了实体和关系周围的结构信息来对实体和关系的表示进行丰富和约束。本发明有效地增强了对实体和关系的表达能力,构造了全新的目标函数,从而更好的对实体和关系进行表示,并保存实体和关系之间的联系,从而能够很好的应用于大规模的知识图谱补全当中。
-
公开(公告)号:CN108052683A
公开(公告)日:2018-05-18
申请号:CN201810058745.1
申请日:2018-01-22
Applicant: 桂林电子科技大学
Abstract: 本发明公开一种基于余弦度量规则的知识图谱表示学习方法,首先将知识图谱中的实体与关系随机嵌入到两个向量空间;其次利用候选实体统计规则,统计相关关系对应的三元组集与候选实体向量集;再次利用余弦相似度构造目标向量与候选实体的评分函数,对候选实体进行评价;最后利用损失函数将所有相关关系的候选实体向量与目标向量进行统一训练,并通过随机梯度下降算法最小化损失函数。当达到优化目标时,即可获得知识图谱中每个实体向量和关系向量的最佳表示,从而更好的表示实体与关系之间的联系,并能够很好的应用于大规模的知识图谱补全当中。
-
公开(公告)号:CN109376249A
公开(公告)日:2019-02-22
申请号:CN201811042565.0
申请日:2018-09-07
Applicant: 桂林电子科技大学
Abstract: 本发明提出一种基于自适应负采样的知识图谱嵌入方法,包括以下步骤:步骤1、根据实体间的相似性对实体向量进行分组;步骤2、利用同一分组内的相似实体进行相互替换并生成与正例三元组相似的负例三元组;步骤3、将所述正例三元组与所述负例三元组作为知识图谱嵌入模型中的训练输入;步骤4、利用所述知识图谱嵌入模型的损失函数优化更新实体向量与关系向量。本发明提高了替换实体与被替换实体之间的相似度,从而提高负例三元组质量;根据实体在知识图谱中出现的频率对实体进行采用,提高了高频实体被训练的次数;通过提高负例三元组的质量,有效的实现了知识图谱中实体与关系的嵌入。
-
公开(公告)号:CN109146078A
公开(公告)日:2019-01-04
申请号:CN201810796671.1
申请日:2018-07-19
Applicant: 桂林电子科技大学
IPC: G06N5/02
Abstract: 本发明公开一种基于动态路径的知识图谱表示学习方法,以翻译模型为基础,考虑了结构三元组(实体,关系,实体)和(实体,路径,实体)的语义信息,当(h,t)存在时,在路径的表示过程中,给其添加一个动态因子α向量。即在训练过程中,每一个多步关系组合而成的路径向量向着与直接关系极为相近的目标优化,那么只要其在一定范围内都将被视为表示了其语义信息而不必必须与给定的向量严格相等。本发明解决现有技术对复杂关系类型事实间的多个直接关系和多个路径无法有效区分的问题,具有良好的实用性。
-
公开(公告)号:CN109146078B
公开(公告)日:2021-04-30
申请号:CN201810796671.1
申请日:2018-07-19
Applicant: 桂林电子科技大学
IPC: G06N5/02
Abstract: 本发明公开一种基于动态路径的知识图谱表示学习方法,以翻译模型为基础,考虑了结构三元组(实体,关系,实体)和(实体,路径,实体)的语义信息,当(h,t)存在时,在路径的表示过程中,给其添加一个动态因子α向量。即在训练过程中,每一个多步关系组合而成的路径向量向着与直接关系极为相近的目标优化,那么只要其在一定范围内都将被视为表示了其语义信息而不必必须与给定的向量严格相等。本发明解决现有技术对复杂关系类型事实间的多个直接关系和多个路径无法有效区分的问题,具有良好的实用性。
-
公开(公告)号:CN109165278A
公开(公告)日:2019-01-08
申请号:CN201811042564.6
申请日:2018-09-07
Applicant: 桂林电子科技大学
Abstract: 本发明提出一种基于实体和关系结构信息的知识图谱表示学习方法,包括以下步骤:获取知识图谱中实体的结构语义信息与关系的结构语义信息;根据所述实体的结构语义信息与关系的结构语义信息,构建实体目标向量与目标关系向量;根据所述实体目标向量与目标关系向量,构建得分函数;根据所述得分函数构建损失函数,通过最小化所述损失函数,学习实体与关系的最佳向量表示。本发明充分地利用了实体和关系周围的结构信息来对实体和关系的表示进行丰富和约束。本发明有效地增强了对实体和关系的表达能力,构造了全新的目标函数,从而更好的对实体和关系进行表示,并保存实体和关系之间的联系,从而能够很好的应用于大规模的知识图谱补全当中。
-
公开(公告)号:CN107590139A
公开(公告)日:2018-01-16
申请号:CN201710856687.2
申请日:2017-09-21
Applicant: 桂林电子科技大学
Abstract: 本发明公开一种基于循环矩阵翻译的知识图谱表示学习方法,首先利用随机生成方法对错误三元组进行生成,并将所有实体与关系分别嵌入不同空间;其次利用循环矩阵生成规则,生成循环矩阵对实体进行投影;再次通过评分函数对三元组的嵌入进行评价;最后利用两种不同损失函数将实体和关系关联起来,并使用SGD算法最小化损失函数,当达到优化目标时,即可获得知识图谱中每个实体向量和关系向量的最佳表示,从而更好的表示实体与关系之间的联系,并能够很好的应用于大规模的知识图谱补全当中。本发明具有较强可行性和良好的实用性。
-
-
-
-
-
-
-
-
-