-
公开(公告)号:CN111310852A
公开(公告)日:2020-06-19
申请号:CN202010154538.3
申请日:2020-03-08
Applicant: 桂林电子科技大学
IPC: G06K9/62
Abstract: 本发明公开一种图像分类方法及系统,涉及数字图像处理技术领域。该方法包括:利用第一图像训练集训练得到特征提取网络模型;利用变分自编码网络、第一图像训练集、特征提取网络模型,以及三种损失函数的加权和,得到与最小的加权和对应的变分自编码网络的解码网络;利用解码网络随机生成伪样本图像集;利用伪样本图像集和第二图像训练集训练全连接神经网络模型,得到分类模型;利用分类模型对待分类图像进行分类。本发明的图像分类方法利用变分自编码网络对第一图像进行分解重构,计算并最小化三种损失函数的加权和,利用与最小的加权和对应的变分自编码网络的解码网络生成伪样本图像集,能完全舍弃旧类样本图像数据,降低内存的占用率。
-
公开(公告)号:CN111310852B
公开(公告)日:2022-08-12
申请号:CN202010154538.3
申请日:2020-03-08
Applicant: 桂林电子科技大学
IPC: G06K9/62 , G06V10/774 , G06V10/764
Abstract: 本发明公开一种图像分类方法及系统,涉及数字图像处理技术领域。该方法包括:利用第一图像训练集训练得到特征提取网络模型;利用变分自编码网络、第一图像训练集、特征提取网络模型,以及三种损失函数的加权和,得到与最小的加权和对应的变分自编码网络的解码网络;利用解码网络随机生成伪样本图像集;利用伪样本图像集和第二图像训练集训练全连接神经网络模型,得到分类模型;利用分类模型对待分类图像进行分类。本发明的图像分类方法利用变分自编码网络对第一图像进行分解重构,计算并最小化三种损失函数的加权和,利用与最小的加权和对应的变分自编码网络的解码网络生成伪样本图像集,能完全舍弃旧类样本图像数据,降低内存的占用率。
-