-
公开(公告)号:CN114821318B
公开(公告)日:2024-03-19
申请号:CN202210443769.5
申请日:2022-04-26
Applicant: 桂林电子科技大学
IPC: G06V20/10 , G06V10/40 , G06V10/774 , G06V10/764 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/048 , G06N3/084
Abstract: 本发明公开一种基于Darkdet‑Net的低照度小样本目标检测方法,所述方法包括如下步骤:1)得到base类与novel类并构建base类与novel类的平衡训练集;2)训练Exindark模块对输入的低照度图像进行特征提取;3)构造MLFA模块对特征图进行多尺度特征的融合与增强;4)构造基于多头SR Attention的Det Head模块对输入的特征图进行检测框预测与分类;5)在base类数据集进行目标检测训练并测试检测效果;6)基于base类和novel类平衡训练集进行小样本新类物体目标检测Fine‑tuning。这种方法能够不受低光照环境下拍摄的影响,对于产生的低照度图像仍然可以进行很好地识别来检测出图像中的目标对象,并且使用Fine‑tuning快速泛化到新的检测类别上。
-
公开(公告)号:CN114821318A
公开(公告)日:2022-07-29
申请号:CN202210443769.5
申请日:2022-04-26
Applicant: 桂林电子科技大学
IPC: G06V20/10 , G06V10/40 , G06V10/774 , G06V10/764 , G06V10/80 , G06V10/82 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明公开一种基于Darkdet‑Net的低照度小样本目标检测方法,所述方法包括如下步骤:1)得到base类与novel类并构建base类与novel类的平衡训练集;2)训练Exindark模块对输入的低照度图像进行特征提取;3)构造MLFA模块对特征图进行多尺度特征的融合与增强;4)构造基于多头SR Attention的Det Head模块对输入的特征图进行检测框预测与分类;5)在base类数据集进行目标检测训练并测试检测效果;6)基于base类和novel类平衡训练集进行小样本新类物体目标检测Fine‑tuning。这种方法能够不受低光照环境下拍摄的影响,对于产生的低照度图像仍然可以进行很好地识别来检测出图像中的目标对象,并且使用Fine‑tuning快速泛化到新的检测类别上。
-