基于时频域分解和时空信息提取的深度学习大气预测方法

    公开(公告)号:CN119622242A

    公开(公告)日:2025-03-14

    申请号:CN202411682811.4

    申请日:2024-11-22

    Abstract: 本发明公开了一种基于时频域分解和时空信息提取的深度学习大气预测方法,包括1)采集多个站点的大气污染物、气象变量的小时数据;2)采用平稳小波变换SWT将数据分解成不同频域下同等长度的子信号序列,同时将日期、季节时间因素融入序列,初步形成模型需要的数据集;3)将步骤2)中的数据集,根据监测站点的地理位置构建拓扑结构的图数据集;4)构建基于时间‑空间注意力机制的编码器,增强数据的时空信息权重;5)GCN、LSTM和FC构建的解码器提取数据的时间特征和空间信息,形成预测输出;6)将RMSE、MAE、MAPE作为评估参数。这种方法能挖掘大气中污染物的传播规律、提高大气预测精度。

Patent Agency Ranking